Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations

2014 ◽  
Vol 276 ◽  
pp. 26-38 ◽  
Author(s):  
Weiping Bu ◽  
Yifa Tang ◽  
Jiye Yang
2013 ◽  
Vol 18 (2) ◽  
pp. 260-273 ◽  
Author(s):  
Alaattin Esen ◽  
Yusuf Ucar ◽  
Nuri Yagmurlu ◽  
Orkun Tasbozan

In the present study, numerical solutions of the fractional diffusion and fractional diffusion-wave equations where fractional derivatives are considered in the Caputo sense have been obtained by a Galerkin finite element method using quadratic B-spline base functions. For the fractional diffusion equation, the L1 discretizaton formula is applied, whereas the L2 discretizaton formula is applied for the fractional diffusion-wave equation. The error norms L 2 and L ∞ are computed to test the accuracy of the proposed method. It is shown that the present scheme is unconditionally stable by applying a stability analysis to the approximation obtained by the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document