Cu3P nanoparticles confined in nitrogen/phosphorus dual-doped porous carbon nanosheets for efficient potassium storage

2022 ◽  
Vol 66 ◽  
pp. 339-347
Author(s):  
Yuanxing Yun ◽  
Baojuan Xi ◽  
Yu Gu ◽  
Fang Tian ◽  
Weihua Chen ◽  
...  
2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p></p><p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (430.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~81.2% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p><br><p></p>


2021 ◽  
Author(s):  
Xinxin Sang ◽  
Hengbo Wu ◽  
Nan Zang ◽  
Huilian Che ◽  
Dongyin Liu ◽  
...  

Co2P hybridized with multi-doped carbon nanoleaves is obtained via direct carbonization of ZIF-L/PEI/PA and show good electro-catalytic performance in OER.


2021 ◽  
pp. 138299
Author(s):  
Xiaojing Zhu ◽  
Qikai Wu ◽  
Jiale Dai ◽  
Dengke Zhao ◽  
Chenghao Yang ◽  
...  

Author(s):  
Kaixiang Zou ◽  
Yuanfu Deng ◽  
Weijing Wu ◽  
Shiwei Zhang ◽  
Guohua Chen

High performance carbon-based materials are ideal electrode materials for Li-ion capacitors (LICs), but there are still many challenges such as the complicated preparation preocesses, high cost and low yield. Also,...


InfoMat ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 421-431
Author(s):  
Huijuan Huang ◽  
Xiao Luo ◽  
Yu Yao ◽  
Xuefeng Zhou ◽  
Yu Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document