Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment

2006 ◽  
Vol 131 (1-2) ◽  
pp. 29-58 ◽  
Author(s):  
Rohit Deo ◽  
Clifford Hurvich ◽  
Yi Lu
2006 ◽  
Vol 4 (2) ◽  
pp. 203
Author(s):  
Alan De Genaro Dario

Volatility swaps are contingent claims on future realized volatility. Variance swaps are similar instruments on future realized variance, the square of future realized volatility. Unlike a plain vanilla option, whose volatility exposure is contaminated by its asset price dependence, volatility and variance swaps provide a pure exposure to volatility alone. This article discusses the risk-neutral valuation of volatility and variance swaps based on the framework outlined in the Heston (1993) stochastic volatility model. Additionally, the Heston (1993) model is calibrated for foreign currency options traded at BMF and its parameters are used to price swaps on volatility and variance of the BRL / USD exchange rate.


2019 ◽  
Vol 17 (4) ◽  
pp. 22
Author(s):  
Omar Abbara ◽  
Mauricio Zevallos

<p>The paper assesses the method proposed by Shumway and Stoffer (2006, Chapter 6, Section 10) to estimate the parameters and volatility of stochastic volatility models. First, the paper presents a Monte Carlo evaluation of the parameter estimates considering several distributions for the perturbations in the observation equation. Second, the method is assessed empirically, through backtesting evaluation of VaR forecasts of the S&amp;P 500 time series returns. In both analyses, the paper also evaluates the convenience of using the Fuller transformation.</p>


2021 ◽  
Vol 14 (12) ◽  
pp. 617
Author(s):  
Jia Liu

This paper proposes a semiparametric realized stochastic volatility model by integrating the parametric stochastic volatility model utilizing realized volatility information and the Bayesian nonparametric framework. The flexible framework offered by Bayesian nonparametric mixtures not only improves the fitting of asymmetric and leptokurtic densities of asset returns and logarithmic realized volatility but also enables flexible adjustments for estimation bias in realized volatility. Applications to equity data show that the proposed model offers superior density forecasts for returns and improved estimates of parameters and latent volatility compared with existing alternatives.


2013 ◽  
Vol 16 (01) ◽  
pp. 1350005 ◽  
Author(s):  
LORENZO TORRICELLI

In the setting of a stochastic volatility model, we find a general pricing equation for the class of payoffs depending on the terminal value of a market asset and its final quadratic variation. This provides a pricing tool for European-style claims paying off at maturity a joint function of the underlying and its realized volatility or variance. We study the solution under various specific stochastic volatility models, give a formula for the computation of the delta and gamma of these claims, and introduce some new interesting payoffs that can be valued by means of the general pricing equation. Numerical results are given and compared to those from plain vanilla derivatives.


Sign in / Sign up

Export Citation Format

Share Document