Facile preparation of binder–free electrode for electrochemical capacitors based on reduced graphene oxide composite film

2019 ◽  
Vol 847 ◽  
pp. 113133 ◽  
Author(s):  
Cui-Xian Liu ◽  
Juan Chen ◽  
Cai-Feng Zhang ◽  
Hai-Han Zhou ◽  
Gao-Yi Han
2020 ◽  
Vol 8 (19) ◽  
pp. 9661-9669 ◽  
Author(s):  
Cong Huang ◽  
Qunli Tang ◽  
Qiushui Feng ◽  
Yanhua Li ◽  
Yali Xu ◽  
...  

An outer–inner dual space utilizing strategy is reported for the fabrication of an ultrahigh volumetric performance polydopamine-coated dopamine/reduced graphene oxide composite film.


2013 ◽  
Vol 247-248 ◽  
pp. 66-70 ◽  
Author(s):  
Chunyang Nie ◽  
Dong Liu ◽  
Likun Pan ◽  
Yong Liu ◽  
Zhuo Sun ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 198 ◽  
Author(s):  
Parthiban Pazhamalai ◽  
Vimal Kumar Mariappan ◽  
Surjit Sahoo ◽  
Woo Young Kim ◽  
Young Sun Mok ◽  
...  

The development of polymer-based devices has attracted much attention due to their miniaturization, flexibility, lightweight and sustainable power sources with high efficiency in the field of wearable/portable electronics, and energy system. In this work, we proposed a polyvinylidene fluoride (PVDF)-based composite matrix for both energy harvesting and energy storage applications. The physicochemical characterizations, such as X-ray diffraction, laser Raman, and field-emission scanning electron microscopy (FE-SEM) analyses, were performed for the electrospun PVDF/sodium niobate and PVDF/reduced graphene oxide composite film. The electrospun PVDF/sodium niobate nanofibrous mat has been utilized for the energy harvester which shows an open circuit voltage of 40 V (peak to peak) at an applied compressive force of 40 N. The PVDF/reduced graphene oxide composite film acts as the electrode for the symmetric supercapacitor (SSC) device fabrication and investigated for their supercapacitive properties. Finally, the self-charging system has been assembled using PVDF/sodium niobate (energy harvester), and PVDF/reduced graphene oxide SSC (energy storage) and the self-charging capability is investigated. The proposed self-charging system can create a pathway for the all-polymer based composite high-performance self-charging system.


2016 ◽  
Vol 206 ◽  
pp. 77-85 ◽  
Author(s):  
Abraham Daniel Arulraj ◽  
Arumugam Arunkumar ◽  
Muthunanthevar Vijayan ◽  
Kamatchirajan Balaji Viswanath ◽  
Vairathevar Sivasamy Vasantha

2020 ◽  
Vol 44 (46) ◽  
pp. 20294-20302
Author(s):  
Kai-li Song ◽  
Rui Li ◽  
Kun Li ◽  
Hao Yu

A 3D-over-oxidized polypyrrole–reduced graphene oxide composite film was prepared by an electrochemical procedure, which showed high electrochemical activity and good selectivity for simultaneous determination of dihydroxybenzene isomers.


Sign in / Sign up

Export Citation Format

Share Document