Application of a Monte Carlo method to the uncertainty assessment in in situ gamma-ray spectrometry

2018 ◽  
Vol 187 ◽  
pp. 1-7 ◽  
Author(s):  
Leif Persson ◽  
Jonas Boson ◽  
Torbjörn Nylén ◽  
Henrik Ramebäck
2009 ◽  
Vol 100 (11) ◽  
pp. 935-940 ◽  
Author(s):  
Jonas Boson ◽  
Agneta H. Plamboeck ◽  
Henrik Ramebäck ◽  
Göran Ågren ◽  
Lennart Johansson

2012 ◽  
Vol 70 (5) ◽  
pp. 868-871 ◽  
Author(s):  
J. Carrazana González ◽  
N. Cornejo Díaz ◽  
M. Jurado Vargas

2019 ◽  
Vol 21 ◽  
pp. 29
Author(s):  
E. G. Androulakaki ◽  
C. Tsabaris ◽  
M. Kokkoris ◽  
G. Eleftheriou ◽  
D. L. Patiris ◽  
...  

The in-situ gamma-ray spectrometry is a well suited method for seabed mapping applications, since it provides rapid results in a cost effective manner. Moreover, the in-situ method is preferable to the commonly applied laboratory measurements, due to its beneficial characteristics. Therefore, the development of in-situ systems for seabed measurements continuously grows. However, an efficiency calibration of the detection system is necessary for obtaining quantitative results in the full spectral range. In the present work, an approach for calculating the full-energy peak efficiency of an underwater insitu spectrometer for measure- ments on the seabed is presented. The experimental work was performed at the coastal site of Vasilikos (Cyprus). The experimental full-energy peak efficiency of the in-situ was determined in the energy range 1400–2600 keV, by combining the in-situ and laboratory reference measurements. The experimental effi- ciency results were theoretically reproduced by means of Monte Carlo (MC) simulations, using the MCNP5 code.


2021 ◽  
Author(s):  
David Breitenmoser

<p>The objective of this work is to simulate the spectral gamma-ray response of NaI(Tl) scintillation detectors for airborne gamma-ray spectrometry (AGRS) using Monte Carlo radiation transport codes. The study is based on a commercial airborne gamma-ray spectrometry detector system with four individual NaI(Tl) scintillation crystals and a total volume of 16.8 l. Monte Carlo source-detector simulations were performed in an event-by-event mode with the commercial multi-purpose transport codes MCNP6.2 and FLUKA. Validation measurements were conducted using <sup>241</sup>Am, <sup>133</sup>Ba, <sup>60</sup>Co, <sup>137</sup>Cs and <sup>152</sup>Eu radiation sources with known activities and source-detector geometries. Energy resolution functions were derived from these measurements combined with additional measurements of natural Uranium, Thorium and Potassium sources. The simulation results are in good agreement with the experimental data with a maximum relative error in the full-energy peak counts of 10%. In addition, no significant difference between the two Monte Carlo radiation transport codes was found with respect to a 95% confidence level. The validated detector model presented herein can be adopted for angular detector response analysis and calibration computations relating radionuclide activity concentrations with spectral detector counts.</p>


2020 ◽  
Author(s):  
Jan Kisiel ◽  
Kinga Polaczek-Grelik ◽  
Katarzyna Szkliniarz ◽  
Agata Walencik-Łata ◽  
Jari Joutsenvaara ◽  
...  

<p>The BSUIN (Baltic Sea Underground Innovation Network) aims to enhance the accessibility of the underground laboratories in the Baltic Sea region for innovation, business and science. One of the BSUIN project activities is characterization of natural background radiation (NBR) in underground facilities. In this talk results from NBR measurements performed in Callio Lab, Pyhäsalmi, Finland, at the depth of 4100 m w.e. will be presented. The in-situ gamma spectra were collected with the use of  HPGe semiconductor spectrometer, whereas the  concentration of radon were measured with RAD7 electronic detector. In addition, the water and rock samples were taken for laboratory analysis in Institute of Physics, University of Silesia, Poland. The concentration radioisotopes in water samples were performed by using a liquid scintillation α/β counter (LSC) and α-particle spectrometry, while the concentration of radioisotopes in rock samples were performed by using laboratory gamma ray spectrometry and also α-particle spectrometry.</p>


Sign in / Sign up

Export Citation Format

Share Document