scholarly journals Effects of Ecklonia stolonifera extract on the obesity and skeletal muscle regeneration in high-fat diet-fed mice

2021 ◽  
Vol 82 ◽  
pp. 104511
Author(s):  
Heegu Jin ◽  
Hyun-Ji Oh ◽  
Junghee Kim ◽  
Kang-Pyo Lee ◽  
Xionggao Han ◽  
...  
Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 377 ◽  
Author(s):  
Kippeum Lee ◽  
Heegu Jin ◽  
Sungwoo Chei ◽  
Hyun-Ji Oh ◽  
Jeong-Yong Lee ◽  
...  

Obesity is associated with excess body fat accumulation that can cause hyperglycemia and reduce skeletal muscle function and strength, which characterize the development of sarcopenic obesity. In this study, we aimed to determine the mechanism whereby acid-hydrolyzed silk peptide (SP) prevents high-fat diet (HFD)-induced obesity and whether it regulates glucose uptake and muscle differentiation using in vivo and in vitro approaches. Our findings demonstrate that SP inhibits body mass gain and the expression of adipogenic transcription factors in visceral adipose tissue (VAT). SP also had an anti-diabetic effect in VAT and skeletal muscle because it upregulated glucose transporter type 4 (GLUT4) and uncoupling protein 3 (UCP3) expression. Furthermore, SP reduced ubiquitin proteasome and promoted myoblast determination protein 1 (MyoD)/myogenic factor 4 (myogenin) expression, implying that it may have potential for the treatment of obesity-induced hyperglycemia and obesity-associated sarcopenia.


2011 ◽  
Vol 11 ◽  
pp. 1525-1535 ◽  
Author(s):  
Mai-Huong Nguyen ◽  
Ming Cheng ◽  
Timothy J. Koh

In obesity and type 2 diabetes, efficient skeletal muscle repair following injury may be required, not only for restoring muscle structure and function, but also for maintaining exercise capacity and insulin sensitivity. The hypothesis of this study was that muscle regeneration would be impaired in ob/ob and db/db mice, which are common mouse models of obesity and type 2 diabetes. Muscle injury was produced by cardiotoxin injection, and regeneration was assessed by morphological and immunostaining techniques. Muscle regeneration was delayed in ob/ob and db/db mice, but not in a less severe model of insulin resistance – feeding a high-fat diet to wild-type mice. Angiogenesis, cell proliferation, and myoblast accumulation were also impaired in ob/ob and db/db mice, but not the high-fat diet mice. The impairments in muscle regeneration were associated with impaired macrophage accumulation; macrophages have been shown previously to be required for efficient muscle regeneration. Impaired regeneration in ob/ob and db/db mice could be due partly to the lack of leptin signaling, since leptin is expressed both in damaged muscle and in cultured muscle cells. In summary, impaired muscle regeneration in ob/ob and db/db mice was associated with reduced macrophage accumulation, angiogenesis, and myoblast activity, and could have implications for insulin sensitivity in the skeletal muscle of obese and type 2 diabetic patients.


Sign in / Sign up

Export Citation Format

Share Document