Synergistic effect of temperature and pulsed electric field on inactivation of Escherichia coli O157:H7 and Salmonella enteritidis in liquid egg yolk

2007 ◽  
Vol 79 (2) ◽  
pp. 689-694 ◽  
Author(s):  
M. Amiali ◽  
M.O. Ngadi ◽  
J.P. Smith ◽  
G.S.V. Raghavan
2001 ◽  
Vol 64 (6) ◽  
pp. 777-782 ◽  
Author(s):  
RAGIP UNAL ◽  
JIN-GAB KIM ◽  
AHMED E. YOUSEF

Pulsed electric field (PEF) and ozone technologies are nonthermal processing methods with potential applications in the food industry. This research was performed to explore the potential synergy between ozone and PEF treatments against selected foodborne bacteria. Cells of Lactobacillus leichmannii ATCC 4797, Escherichia coli O157:H7 ATCC 35150, and Listeria monocytogenes Scott A were suspended in 0.1% NaCl and treated with ozone, PEF, and ozone plus PEF. Cells were treated with 0.25 to 1.00 μg of ozone per ml of cell suspension, PEF at 10 to 30 kV/cm, and selected combinations of ozone and PEF. Synergy between ozone and PEF varied with the treatment level and the bacterium treated. L. leichmannii treated with PEF (20 kV/cm) after exposure to 0.75 and 1.00 μg/ml of ozone was inactivated by 7.1 and 7.2 log10 CFU/ml, respectively; however, ozone at 0.75 and 1.00 μg/ml and PEF at 20 kV/cm inactivated 2.2, 3.6, and 1.3 log10 CFU/ml, respectively. Similarly, ozone at 0.5 and 0.75 μg/ml inactivated 0.5 and 1.8 log10 CFU/ml of E. coli, PEF at 15 kV/cm inactivated 1.8 log10 CFU/ml, and ozone at 0.5 and 0.75 μg/ml followed by PEF (15 kV/cm) inactivated 2.9 and 3.6 log10 CFU/ml, respectively. Populations of L. monocytogenes decreased 0.1, 0.5, 3.0, 3.9, and 0.8 log10 CFU/ml when treated with 0.25, 0.5, 0.75, and 1.0 μg/ml of ozone and PEF (15 kV/cm), respectively; however, when the bacterium was treated with 15 kV/cm, after exposure to 0.25, 0.5, and 0.75 μg/ml of ozone, 1.7, 2.0, and 3.9 log10 CFU/ml were killed, respectively. In conclusion, exposure of L. leichmannii, E. coli, and L. monocytogenes to ozone followed by the PEF treatment showed a synergistic bactericidal effect. This synergy was most apparent with mild doses of ozone against L. leichmannii.


1996 ◽  
Vol 59 (10) ◽  
pp. 1023-1030 ◽  
Author(s):  
YEOW-LIM TEO ◽  
TIMOTHY J. RAYNOR ◽  
KAMESWAR R. ELLAJOSYULA ◽  
STEPHEN J. KNABEL

This study was undertaken to determine if high temperature and high pH interact synergistically to enhance the rate of destruction of two important gram-negative foodborne pathogens, Escherichia coli O157:H7 and Salmonella enteritidis. The rates of destruction in NaHCO3-NaOH buffers at pH 7.0, 10.0, and 11.0 were determined at 35, 40, 45, 50, 55, 60, and 65°C. Use of an improved heating protocol eliminated a “tailing effect” at longer exposure times. The present study demonstrated that the combination of high pH and high temperature resulted in a highly significant synergistic interaction (P > F = 0.0001), which caused rapid death of both E. coli O157:H7 and S. enteritidis. This “alka-therm” technology might be used commercially to destroy gram-negative foodborne pathogens on various raw agricultural commodities.


2003 ◽  
Vol 66 (5) ◽  
pp. 755-759 ◽  
Author(s):  
GULSUN AKDEMIR EVRENDILEK ◽  
Q. HOWARD ZHANG

This investigation was undertaken to study the inactivation of Escherichia coli O157:H7 by pulsed electric field (PEF) treatment and heat treatment after exposure to different stresses. E. coli O157:H7 cells exposed to different pHs (3.6, 5.2, and 7.0 for 6 h), different temperatures (4, 35, and 40°C for 6 h), and different pre-PEF treatments (10, 15, and 20 kV/cm) were treated with PEFs (20, 25, and 30 kV/cm) or heat (60°C for 3 min). The results of these experiments demonstrated that a pH of 3.6 and temperatures of 4 and 40°C caused significant decreases in the inactivation of E. coli O157:H7 by PEF treatment and heat treatment (P < 0.05). Pre-PEF treatments, pHs of 5.2 and 7.0, and a temperature of 35°C, on the other hand, did not result in any resistance of E. coli O157:H7 cells to inactivation by PEF treatment and heat treatment (P > 0.05).


2019 ◽  
Vol 10 ◽  
Author(s):  
Zhenyu Liu ◽  
Lingying Zhao ◽  
Qin Zhang ◽  
Nan Huo ◽  
Xiaojing Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document