scholarly journals Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets

2017 ◽  
Vol 67 (3) ◽  
pp. 603-618 ◽  
Author(s):  
Marcel Klingenberg ◽  
Akiko Matsuda ◽  
Sven Diederichs ◽  
Tushar Patel
Cancers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 258 ◽  
Author(s):  
Man Wang ◽  
Fei Yu ◽  
Peifeng Li

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. HCC patients are commonly diagnosed at an advanced stage, for which highly effective therapies are limited. Moreover, the five-year survival rate of HCC patients remains poor due to high frequency of tumor metastasis and recurrence. These challenges give rise to the emergent need to discover promising biomarkers for HCC diagnosis and identify novel targets for HCC therapy. Circular RNAs (circRNAs), a class of long-overlook non-coding RNA, have been revealed as multi-functional RNAs in recent years. Growing evidence indicates that circRNA expression alterations have a broad impact in biological characteristics of HCC. Most of these circRNAs regulate HCC progression by acting as miRNA sponges, suggesting that circRNAs may function as promising diagnostic biomarkers and ideal therapeutic targets for HCC. In this review, we summarize the current progress in studying the functional role of circRNAs in HCC pathogenesis and present their potential values as diagnostic biomarkers and therapeutic targets. In-depth investigations on the function and mechanism of circRNAs in HCC will enrich our knowledge of HCC pathogenesis and contribute to the development of effective diagnostic biomarkers and therapeutic targets for HCC.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 902
Author(s):  
Eva Costanzi ◽  
Carolina Simioni ◽  
Gabriele Varano ◽  
Cinzia Brenna ◽  
Ilaria Conti ◽  
...  

Extracellular vesicles (EVs) have attracted interest as mediators of intercellular communication following the discovery that EVs contain RNA molecules, including non-coding RNA (ncRNA). Growing evidence for the enrichment of peculiar RNA species in specific EV subtypes has been demonstrated. ncRNAs, transferred from donor cells to recipient cells, confer to EVs the feature to regulate the expression of genes involved in differentiation, proliferation, apoptosis, and other biological processes. These multiple actions require accuracy in the isolation of RNA content from EVs and the methodologies used play a relevant role. In liver, EVs play a crucial role in regulating cell–cell communications and several pathophysiological events in the heterogeneous liver class of cells via horizontal transfer of their cargo. This review aims to discuss the rising role of EVs and their ncRNAs content in regulating specific aspects of hepatocellular carcinoma development, including tumorigenesis, angiogenesis, and tumor metastasis. We analyze the progress in EV-ncRNAs’ potential clinical applications as important diagnostic and prognostic biomarkers for liver conditions.


Bioengineered ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 673-681
Author(s):  
Jie Cao ◽  
Lili Wu ◽  
Xin Lei ◽  
Keqing Shi ◽  
Liang Shi ◽  
...  

2017 ◽  
Vol 143 (6) ◽  
pp. 981-990 ◽  
Author(s):  
Ji-Nan Xiao ◽  
Ting-Hua Yan ◽  
Rui-Ming Yu ◽  
Yi Gao ◽  
Wen-Long Zeng ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Shuai He ◽  
Jin-Feng Li ◽  
Hao Tian ◽  
Ye Sang ◽  
Xiao-Jing Yang ◽  
...  

BACKGROUND: Early recurrence is the main obstacle for long-term survival of hepatocellular carcinoma (HCC) patients after curative resection. OBJECTIVE: We aimed to develop a long non-coding RNA (lncRNA) based signature to predict early recurrence. METHODS: Using bioinformatics analysis and quantitative reverse transcription PCR (RT-qPCR), we screened for lncRNA candidates that were abnormally expressed in HCC. The expression levels of candidate lncRNAs were analyzed in HCC tissues from 160 patients who underwent curative resection, and a risk model for the prediction of recurrence within 1 year (early recurrence) of HCCs was constructed with linear support vector machine (SVM). RESULTS: A lncRNA-based classifier (Clnc), which contained nine differentially expressed lncRNAs including AF339810, AK026286, BC020899, HEIH, HULC, MALAT1, PVT1, uc003fpg, and ZFAS1 was constructed. In the test set, this classifier reliably predicted early recurrence (AUC, 0.675; sensitivity, 72.0%; specificity, 63.1%) with an odds ratio of 4.390 (95% CI, 2.120–9.090). Clnc showed higher accuracy than traditional clinical features, including tumor size, portal vein tumor thrombus (PVTT) in predicting early recurrence (AUC, 0.675 vs 0.523 vs 0.541), and had much higher sensitivity than Barcelona Clinical Liver Cancer (BCLC; 72.0% vs 50.0%), albeit their AUCs were comparable (0.675 vs 0.678). Moreover, combining Clnc with BCLC significantly increased the AUC, compared with Clnc or BCLC alone in predicting early recurrence (all P< 0.05). Finally, logistic and Cox regression analysis suggested that Clnc was an independent prognostic factor and associated with the early recurrence and recurrence-free survival of HCC patients after resection, respectively (all P= 0.001). CONCLUSIONS: Our lncRNA-based classifier Clnc can predict early recurrence of patients undergoing surgical resection of HCC.


Sign in / Sign up

Export Citation Format

Share Document