scholarly journals 136 Technical advance: bacterial colonization of 3D organotypic skin models for long-term host-microbe interactions and microbiome intervention studies

2021 ◽  
Vol 141 (10) ◽  
pp. S171
Author(s):  
G. Rikken ◽  
L. Meesters ◽  
I.M. van Vlijmen-Willems ◽  
D. Rodijk-Olthuis ◽  
P. Jansen ◽  
...  
mBio ◽  
2015 ◽  
Vol 6 (3) ◽  
Author(s):  
Kristen E. Murfin ◽  
Ming-Min Lee ◽  
Jonathan L. Klassen ◽  
Bradon R. McDonald ◽  
Bret Larget ◽  
...  

ABSTRACTMicrobial symbionts provide benefits that contribute to the ecology and fitness of host plants and animals. Therefore, the evolutionary success of plants and animals fundamentally depends on long-term maintenance of beneficial associations. Most work investigating coevolution and symbiotic maintenance has focused on species-level associations, and studies are lacking that assess the impact of bacterial strain diversity on symbiotic associations within a coevolutionary framework. Here, we demonstrate that fitness in mutualism varies depending on bacterial strain identity, and this is consistent with variation shaping phylogenetic patterns and maintenance through fitness benefits. Through genome sequencing of nine bacterial symbiont strains and cophylogenetic analysis, we demonstrate diversity amongXenorhabdus bovieniibacteria. Further, we identified cocladogenesis betweenSteinernema feltiaenematode hosts and their correspondingX. bovieniisymbiont strains, indicating potential specificity within the association. To test the specificity, we performed laboratory crosses of nematode hosts with native and nonnative symbiont strains, which revealed that combinations with the native bacterial symbiont and closely related strains performed significantly better than those with more divergent symbionts. Through genomic analyses we also defined potential factors contributing to specificity between nematode hosts and bacterial symbionts. These results suggest that strain-level diversity (e.g., subspecies-level differences) in microbial symbionts can drive variation in the success of host-microbe associations, and this suggests that these differences in symbiotic success could contribute to maintenance of the symbiosis over an evolutionary time scale.IMPORTANCEBeneficial symbioses between microbes and plant or animal hosts are ubiquitous, and in these associations, microbial symbionts provide key benefits to their hosts. As such, host success is fundamentally dependent on long-term maintenance of beneficial associations. Prolonged association between partners in evolutionary time is expected to result in interactions in which only specific partners can fully support symbiosis. The contribution of bacterial strain diversity on specificity and coevolution in a beneficial symbiosis remains unclear. In this study, we demonstrate that strain-level differences in fitness benefits occur in beneficial host-microbe interactions, and this variation likely shapes phylogenetic patterns and symbiotic maintenance. This highlights that symbiont contributions to host biology can vary significantly based on very-fine-scale differences among members of a microbial species. Further, this work emphasizes the need for greater phylogenetic resolution when considering the causes and consequences of host-microbe interactions.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
David R Hill ◽  
Sha Huang ◽  
Melinda S Nagy ◽  
Veda K Yadagiri ◽  
Courtney Fields ◽  
...  

The human gastrointestinal tract is immature at birth, yet must adapt to dramatic changes such as oral nutrition and microbial colonization. The confluence of these factors can lead to severe inflammatory disease in premature infants; however, investigating complex environment-host interactions is difficult due to limited access to immature human tissue. Here, we demonstrate that the epithelium of human pluripotent stem-cell-derived human intestinal organoids is globally similar to the immature human epithelium and we utilize HIOs to investigate complex host-microbe interactions in this naive epithelium. Our findings demonstrate that the immature epithelium is intrinsically capable of establishing a stable host-microbe symbiosis. Microbial colonization leads to complex contact and hypoxia driven responses resulting in increased antimicrobial peptide production, maturation of the mucus layer, and improved barrier function. These studies lay the groundwork for an improved mechanistic understanding of how colonization influences development of the immature human intestine.


2017 ◽  
Author(s):  
David R. Hill ◽  
Sha Huang ◽  
Melinda S. Nagy ◽  
Veda K. Yadagiri ◽  
Courtney Fields ◽  
...  

AbstractThe human gastrointestinal tract is immature at birth, yet must adapt to dramatic changes such as oral nutrition and microbial colonization. The confluence of these factors can lead to severe inflammatory disease in premature infants; however, investigating complex environment-host interactions is diZcult due to limited access to immature human tissue. Here, we demonstrate that the epithelium of human pluripotent stem cell-derived human intestinal organoids is globally similar to the immature human epithelium and we utilize HIOs to investigate complex host-microbe interactions in this naïve epithelium. Our findings demonstrate that the immature epithelium is intrinsically capable of establishing a stable host-microbe symbiosis. Microbial colonization leads to complex contact and hypoxia driven responses resulting in increased antimicrobial peptide production, maturation of the mucus layer, and improved barrier function. These studies lay the groundwork for an improved mechanistic understanding of how colonization influences development of the immature human intestine.


2008 ◽  
Vol 15 (1) ◽  
pp. 22-33 ◽  
Author(s):  
Frank R. Vellutino ◽  
Haiyan Zhang

Abstract This article reviews recent intervention studies that have provided the foundation for a variety of RTI approaches to reading disability classification and remediation. The three-tier model of RTI is defined and discussed. Selected findings from a kindergarten and first grade intervention study are summarized.


2009 ◽  
Vol 4 (10) ◽  
pp. 457-462 ◽  
Author(s):  
Sebastian Fraune ◽  
Thomas C. G. Bosch ◽  
René Augustin

Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 148
Author(s):  
Alessandra Coscia ◽  
Flaminia Bardanzellu ◽  
Elisa Caboni ◽  
Vassilios Fanos ◽  
Diego Giampietro Peroni

In recent years, the role of human microbiota as a short- and long-term health promoter and modulator has been affirmed and progressively strengthened. In the course of one’s life, each subject is colonized by a great number of bacteria, which constitute its specific and individual microbiota. Human bacterial colonization starts during fetal life, in opposition to the previous paradigm of the “sterile womb”. Placenta, amniotic fluid, cord blood and fetal tissues each have their own specific microbiota, influenced by maternal health and habits and having a decisive influence on pregnancy outcome and offspring outcome. The maternal microbiota, especially that colonizing the genital system, starts to influence the outcome of pregnancy already before conception, modulating fertility and the success rate of fertilization, even in the case of assisted reproduction techniques. During the perinatal period, neonatal microbiota seems influenced by delivery mode, drug administration and many other conditions. Special attention must be reserved for early neonatal nutrition, because breastfeeding allows the transmission of a specific and unique lactobiome able to modulate and positively affect the neonatal gut microbiota. Our narrative review aims to investigate the currently identified pre- and peri-natal factors influencing neonatal microbiota, before conception, during pregnancy, pre- and post-delivery, since the early microbiota influences the whole life of each subject.


Sign in / Sign up

Export Citation Format

Share Document