scholarly journals Edge excitation geometry for studying intrinsic emission spectra of bulk n-InP

2014 ◽  
Vol 147 ◽  
pp. 168-172 ◽  
Author(s):  
Oleg Semyonov ◽  
Arsen Subashiev ◽  
Zhichao Chen ◽  
Serge Luryi
2001 ◽  
Vol 16 (5) ◽  
pp. 1429-1433 ◽  
Author(s):  
Philip D. Rack ◽  
Jeffrey J. Peterson ◽  
Michael D. Potter ◽  
Wounjhang Park

Cathodoluminescence emission spectra and photoluminescence (PL) excitation spectra were used to evaluate Eu+3 and Cr+3 as activators for red luminescence in ZnGa2O4. In the ZnGa2O4:Eu materials red emission from Eu+3 and blue intrinsic emission were observed. The blue intrinsic emission increased relative the Eu+3 emission with increasing current density and is attributed to preferential current saturation of the Eu+3 activators. In addition, PL excitation measurements revealed that the inefficient energy transfer from the ZnGa2O4 host to the Eu+3 is due to poor spectral overlap between the ZnGa2O4 emission and the Eu+3 absorption. Cr-doping resulted in a saturated red-color, and no host emission was observed over the entire current density regime investigated. The PL excitation of the ZnGa2O4:Cr revealed good overlap between the ZnGa2O4 host and the Cr+3 absorption. Efficient energy transfer to the Cr+3 activators occurs via multipolar interactions.


Author(s):  
Y. Y. Wang ◽  
H. Zhang ◽  
V. P. Dravid ◽  
H. Zhang ◽  
L. D. Marks ◽  
...  

Azuma et al. observed planar defects in a high pressure synthesized infinitelayer compound (i.e. ACuO2 (A=cation)), which exhibits superconductivity at ~110 K. It was proposed that the defects are cation deficient and that the superconductivity in this material is related to the planar defects. In this report, we present quantitative analysis of the planar defects utilizing nanometer probe xray microanalysis, high resolution electron microscopy, and image simulation to determine the chemical composition and atomic structure of the planar defects. We propose an atomic structure model for the planar defects.Infinite-layer samples with the nominal chemical formula, (Sr1-xCax)yCuO2 (x=0.3; y=0.9,1.0,1.1), were prepared using solid state synthesized low pressure forms of (Sr1-xCax)CuO2 with additions of CuO or (Sr1-xCax)2CuO3, followed by a high pressure treatment.Quantitative x-ray microanalysis, with a 1 nm probe, was performed using a cold field emission gun TEM (Hitachi HF-2000) equipped with an Oxford Pentafet thin-window x-ray detector. The probe was positioned on the planar defects, which has a 0.74 nm width, and x-ray emission spectra from the defects were compared with those obtained from vicinity regions.


1997 ◽  
Vol 7 (C2) ◽  
pp. C2-515-C2-516
Author(s):  
H. Agren ◽  
L. G.M. Pettersson ◽  
V. Carravetta ◽  
Y. Luo ◽  
L. Yang ◽  
...  

1980 ◽  
Vol 41 (12) ◽  
pp. 1431-1436 ◽  
Author(s):  
M. Larzillière ◽  
F. Launay ◽  
J.-Y. Roncin

1979 ◽  
Vol 40 (C2) ◽  
pp. C2-417-C2-419
Author(s):  
C. H.W. Jones ◽  
M. Dombsky
Keyword(s):  

1974 ◽  
Vol 35 (C6) ◽  
pp. C6-324-C6-324
Author(s):  
A. G. MADDOCK ◽  
A. F. WILLIAMS ◽  
J. FENGER ◽  
K. E. SIERKIERSKA
Keyword(s):  

1987 ◽  
Vol 48 (C9) ◽  
pp. C9-1059-C9-1062
Author(s):  
P. J. DURHAM ◽  
C. F. HAGUE ◽  
J.-M. MARIOT ◽  
W. M. TEMMERMAN

2020 ◽  
Vol 1 (2) ◽  
pp. 5-8
Author(s):  
Komang Gde Suastika, Heri Suyanto, Gunarjo, Sadiana, Darmaji

Abstract - Laser-Induced Breakdown Spectroscopy (LIBS) is one method of atomic emission spectroscopy using laser ablation as an energy source. This method is used to characterize the type of amethysts that originally come from Sukamara, Central Kalimantan. The result of amethyst characterization can be used as a reference for claiming the natural wealth of the amethyst. The amethyst samples are directly taken from the amethyst mining field in the District Gem Amethyst and consist of four color variations: white, black, yellow, and purple. These samples were analyzed by LIBS, using laser energy of 120 mJ, delay time detection of 2 μs and accumulation of 3, with and without cleaning. The purpose of this study is to determine emission spectra characteristics, contained elements, and physical characteristics of each amethyst sample. The spectra show that the amethyst samples contain some elements such as Al, Ca, K, Fe, Gd, Ba, Si, Be, H, O, N, Cl and Pu with various emission intensities. The value of emission intensity corresponds to concentration of element in the sample. Hence, the characteristics of the amethysts are based on their concentration value. The element with the highest concentration in all samples is Si, which is related to the chemical formula of SiO2. The element with the lowest concentration in all samples is Ca that is found in black and yellow amethysts. The emission intensity of Fe element can distinguish between white, purple, and yellow amethyst. If Fe emission intensity is very low, it indicates yellow sample. Thus, we may conclude that LIBS is a method that can be used to characterize the amethyst samples.Key words: amethyst, impurity, laser-induced, breakdown spectroscopy, characteristic, gemstones


Sign in / Sign up

Export Citation Format

Share Document