Investigation of residual stress within linear friction welded steel sheets by alternating pressure via X-ray diffraction and contour method approaches

2021 ◽  
Vol 64 ◽  
pp. 1223-1234
Author(s):  
Ramy Gadallah ◽  
Seiichiro Tsutsumi ◽  
Yasuhiro Aoki ◽  
Hidetoshi Fujii
Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 566
Author(s):  
Bernd-Arno Behrens ◽  
Jens Gibmeier ◽  
Kai Brunotte ◽  
Hendrik Wester ◽  
Nicola Simon ◽  
...  

Residual stresses resulting from hot-forming processes represent an important aspect of a component’s performance and service life. Considering the whole process chain of hot forming, the integrated heat treatment provided by a defined temperature profile during cooling offers a great potential for the targeted adjustment of the desired residual stress state. Finite element (FE) simulation is a powerful tool for virtual process design aimed at generating a beneficial residual stress profile. The validation of these FE models is typically carried out on the basis of individual surface points, as these are accessible through methods like X-ray diffraction, hole-drilling, or the nanoindentation method. However, especially in bulk forming components, it is important to evaluate the quality of the model based on residual stress data from the volume. For these reasons, in this paper, an FE model which was already validated by near surface X-ray diffraction analyses was used to explain the development of residual stresses in a reference hot forming process for different cooling scenarios. Subsequently, the reference process scenarios were experimentally performed, and the resulting residual stress distributions in the cross-section of the bulk specimens were determined by means of the contour method. These data were used to further validate the numerical simulation of the hot forming process, wherein a good agreement between the contour method and process simulation was observed.


2021 ◽  
Vol 11 (12) ◽  
pp. 5439
Author(s):  
Yaoqiong Liu ◽  
Tao Zhang ◽  
Hai Gong ◽  
Yunxin Wu

The preparation of the Al-Zn-Mg-Cu T-type rib consisted of forging, quenching, cold pressing, aging and the final machining processes, and the evolution of residual stress played a significant role in its properties and accuracy. Numerical models were established to investigate the evolution and distribution of residual stress for the T-type rib during the quenching and cold pressing processes. The results showed that the distribution of residual stress at the stiffened area is asymmetrical, which is different from the symmetrical distribution at the smooth area. The cold pressing is beneficial for the reduction of residual stress. The stepwise cold pressing resulted in the heterogeneous distribution of residual stress at the stiffened area and the overlap region. Three comparative T-type ribs were conducted, and their residual stresses were measured using X-ray diffraction and the contour method. A stress reduction of 50% can be obtained at the surfaces of the T-type rib through cold pressing followed by the aging process. The reduction of the maximum tensile stress at the stiffened area of the T-type rib was 42% and 50% for the cold pressing and aging, respectively, which increased to 54% and 60% at the smooth area. The mechanism of the stress reduction during the cold pressing and the aging processes was discussed.


Author(s):  
Fabian Jaeger ◽  
Alessandro Franceschi ◽  
Holger Hoche ◽  
Peter Groche ◽  
Matthias Oechsner

AbstractCold extruded components are characterized by residual stresses, which originate from the experienced manufacturing process. For industrial applications, reproducibility and homogeneity of the final components are key aspects for an optimized quality control. Although striving to obtain identical deformation and surface conditions, fluctuation in the manufacturing parameters and contact shear conditions during the forming process may lead to variations of the spatial residual stress distribution in the final product. This could lead to a dependency of the residual stress measurement results on the relative axial and circumferential position on the sample. An attempt to examine this problem is made by the employment of design of experiments (DoE) methods. A statistical analysis of the residual stress results generated through X-Ray diffraction is performed. Additionally, the ability of cold extrusion processes to generate uniform stress states is analyzed on specimens of austenitic stainless steel 1.4404 and possible correlations with the pre-deformed condition are statistically examined. Moreover, the influence of the coating, consisting of oxalate and a MoS2 based lubricant, on the X-Ray diffraction measurements of the surface is investigated.


2010 ◽  
Vol 135 ◽  
pp. 238-242
Author(s):  
Yue Ming Liu ◽  
Ya Dong Gong ◽  
Wei Ding ◽  
Ting Chao Han

In this paper, effective finite element model have been developed to simulation the plastic deformation cutting in the process for a single particle via the software of ABAQUS, observing the residual stress distribution in the machined surface, the experiment of grinding cylindrical workpiece has been brought in the test of super-high speed grinding, researching the residual stress under the machined surface by the method of X-ray diffraction, which can explore the different stresses from different super-high speed in actual, and help to analyze the means of reducing the residual stresses in theory.


1979 ◽  
Vol 23 ◽  
pp. 333-339
Author(s):  
S. K. Gupta ◽  
B. D. Cullity

Since the measurement of residual stress by X-ray diffraction techniques is dependent on the difference in angle of a diffraction peak maximum when the sample is examined consecutively with its surface at two different angles to the diffracting planes, it is important that these diffraction angles be obtained precisely, preferably with an accuracy of ± 0.01 deg. 2θ. Similar accuracy is desired in precise lattice parameter determination. In such measurements, it is imperative that the diffractometer be well-aligned. It is in the context of diffractometer alignment with the aid of a silicon powder standard free of residual stress that the diffraction peak analysis techniques described here have been developed, preparatory to residual stress determinations.


Sign in / Sign up

Export Citation Format

Share Document