scholarly journals Influence of (Mg1/3Nb2/3) complex substitutions on crystal structures and microwave dielectric properties of Li2TiO3 ceramics with extreme low loss

2018 ◽  
Vol 4 (4) ◽  
pp. 368-382 ◽  
Author(s):  
Huan-Huan Guo ◽  
Di Zhou ◽  
Li-Xia Pang ◽  
Jin-Zhan Su
2020 ◽  
Vol 830 ◽  
pp. 37-42
Author(s):  
Shih Sheng Liu ◽  
Shiuan Ho Chang ◽  
Yuan Bin Chen

The microwave dielectric properties and microstructures of the (1-x)(Mg0.95Zn0.05)2TiO4-x (Ca0.8Sr0.2)TiO3 ceramics prepared using the conventional solid-state route were investigated. The structure and microstructure were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Ilmenite-structured (Mg0.95Zn0.05)TiO3 was detected as a second phase. The coexistence of the second phase, however, did not degrade the dielectric properties of the specimen because the phases were compatible. At x = 0.07, a dielectric constant (εr) of ~17.86, a quality factor (Q×f) value of ~ Q×f~133,600 Hz (at 10 GHz), and a temperature coefficient of resonant frequency (τf) of ~ –5ppm/°Cwere obtained for 0.93(Mg0.95Zn0.05)2TiO4-0.07(Ca0.8Sr0.2)TiO3 ceramic sintered at 1240°C for 4 hr. The dielectric is proposed as a candidate material for low-loss microwave and millimeter wave applications.


2010 ◽  
Vol 25 (7) ◽  
pp. 1235-1238 ◽  
Author(s):  
Huanfu Zhou ◽  
Xiuli Chen ◽  
Liang Fang ◽  
Dongjin Chu ◽  
Hong Wang

A new low sintering temperature microwave dielectric ceramic, Li2ZnTi3O8, was investigated. X-ray diffraction data show that Li2ZnTi3O8 has a cubic structure [P4332(212)] with lattice parameters a = 8.37506 Å, V = 587.44 Å3, and Z = 4 when the sintering temperature is 1050 °C. The Li2ZnTi3O8 ceramic exhibits good microwave dielectric properties with εr about 26.2, Q×f value about 62,000 GHz, and τf about −15 ppm/°C. The addition of BaCu(B2O5) can effectively lower the sintering temperature from 1050 to 900 °C without degrading the microwave dielectric properties. Compatibility with Ag electrode indicates this material can be applied to low temperature cofired ceramic devices.


2009 ◽  
Vol 387 (1) ◽  
pp. 36-45 ◽  
Author(s):  
A. Belous ◽  
O. Ovchar ◽  
O. Kramarenko ◽  
D. Mischuk ◽  
B. Jancar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document