scholarly journals Kinetic Analysis of Base-Pairing Preference for Nucleotide Incorporation Opposite Template Pyrimidines by Human DNA Polymerase ι

2009 ◽  
Vol 389 (2) ◽  
pp. 264-274 ◽  
Author(s):  
Jeong-Yun Choi ◽  
Seonhee Lim ◽  
Robert L. Eoff ◽  
F. Peter Guengerich
Nature ◽  
2004 ◽  
Vol 430 (6997) ◽  
pp. 377-380 ◽  
Author(s):  
Deepak T. Nair ◽  
Robert E. Johnson ◽  
Satya Prakash ◽  
Louise Prakash ◽  
Aneel K. Aggarwal

2006 ◽  
Vol 26 (17) ◽  
pp. 6435-6441 ◽  
Author(s):  
Robert E. Johnson ◽  
Lajos Haracska ◽  
Louise Prakash ◽  
Satya Prakash

ABSTRACT Human DNA polymerase ι (Pol ι) differs from other DNA polymerases in that it exhibits a marked template specificity, being more efficient and accurate opposite template purines than opposite pyrimidines. The crystal structures of Pol ι with template A and incoming dTTP and with template G and incoming dCTP have revealed that in the Pol ι active site, the templating purine adopts a syn conformation and forms a Hoogsteen base pair with the incoming pyrimidine which remains in the anti conformation. By using 2-aminopurine and purine as the templating residues, which retain the normal N7 position but lack the N6 of an A or the O6 of a G, here we provide evidence that whereas hydrogen bonding at N6 is dispensable for the proficient incorporation of a T opposite template A, hydrogen bonding at O6 is a prerequisite for C incorporation opposite template G. To further analyze the contributions of O6 and N7 hydrogen bonding to DNA synthesis by Pol ι, we have examined its proficiency for replicating through the 6 O-methyl guanine and 8-oxoguanine lesions, which affect the O6 and N7 positions of template G, respectively. We conclude from these studies that for proficient T incorporation opposite template A, only the N7 hydrogen bonding is required, but for proficient C incorporation opposite template G, hydrogen bonding at both the N7 and O6 is an imperative. The dispensability of N6 hydrogen bonding for proficient T incorporation opposite template A has important biological implications, as that would endow Pol ι with the ability to replicate through lesions which impair the Watson-Crick hydrogen bonding potential at both the N1 and N6 positions of templating A.


2004 ◽  
Vol 24 (2) ◽  
pp. 936-943 ◽  
Author(s):  
M. Todd Washington ◽  
Robert E. Johnson ◽  
Louise Prakash ◽  
Satya Prakash

ABSTRACT Human DNA polymerase ι (Polι) is a member of the Y family of DNA polymerases involved in translesion DNA synthesis. Polι is highly unusual in that it possesses a high fidelity on template A, but has an unprecedented low fidelity on template T, preferring to misincorporate a G instead of an A. To understand the mechanisms of nucleotide incorporation opposite different template bases by Polι, we have carried out pre-steady-state kinetic analyses of nucleotide incorporation opposite templates A and T. These analyses have revealed that opposite template A, the correct nucleotide is preferred because it is bound tighter and is incorporated faster than the incorrect nucleotides. Opposite template T, however, the correct and incorrect nucleotides are incorporated at very similar rates, and interestingly, the greater efficiency of G misincorporation relative to A incorporation opposite T arises predominantly from the tighter binding of G. Based on these results, we propose that the incipient base pair is accommodated differently in the active site of Polι dependent upon the template base and that when T is the templating base, Polι accommodates the wobble base pair better than the Watson-Crick base pair.


Structure ◽  
2005 ◽  
Vol 13 (10) ◽  
pp. 1569-1577 ◽  
Author(s):  
Deepak T. Nair ◽  
Robert E. Johnson ◽  
Louise Prakash ◽  
Satya Prakash ◽  
Aneel K. Aggarwal

2010 ◽  
Vol 29 (1) ◽  
pp. 79-86 ◽  
Author(s):  
Huifang Zhu ◽  
Yanfeng Fan ◽  
Hongjuan Jiang ◽  
Jing Shen ◽  
Hongyan Qi ◽  
...  

2005 ◽  
Vol 25 (19) ◽  
pp. 8748-8754 ◽  
Author(s):  
William T. Wolfle ◽  
Robert E. Johnson ◽  
Irina G. Minko ◽  
R. Stephen Lloyd ◽  
Satya Prakash ◽  
...  

ABSTRACT Acrolein, an α,β-unsaturated aldehyde, is generated in vivo as the end product of lipid peroxidation and from oxidation of polyamines. The reaction of acrolein with the N 2 group of guanine in DNA leads to the formation of a cyclic adduct, γ-hydroxy-1,N 2-propano-2′-deoxyguanosine (γ-HOPdG). Previously, we have shown that proficient replication through the γ-HOPdG adduct can be mediated by the sequential action of human DNA polymerases (Pols) ι and κ, in which Polι incorporates either pyrimidine opposite γ-HOPdG, but Polκ extends only from the cytosine. Since γ-HOPdG can adopt either a ring-closed cyclic form or a ring-opened form in DNA, to better understand the mechanisms that Pols ι and κ employ to promote replication through this lesion, we have examined the ability of these polymerases to replicate through the structural analogs of γ-HOPdG that are permanently either ring closed or ring opened. Our studies with these model adducts show that whereas the ring-opened form of γ-HOPdG is not inhibitory to synthesis by human Pols η, ι, or κ, only Polι is able to incorporate nucleotides opposite the ring-closed form, which is known to adopt a syn conformation in DNA. From these studies, we infer that (i) Pols η, ι, and κ have the ability to proficiently replicate through minor-groove DNA lesions that do not perturb the Watson-Crick hydrogen bonding of the template base with the incoming nucleotide, and (ii) Polι can accommodate a minor-groove-adducted template purine which adopts a syn conformation in DNA and forms a Hoogsteen base pair with the incoming nucleotide.


1984 ◽  
Vol 30 (4) ◽  
pp. 549-552 ◽  
Author(s):  
H J Lin ◽  
P C Wu ◽  
C L Lai ◽  
W Chak

Abstract A micromethod for the specific measurement of hepatitis B viral DNA polymerase in serum is presented, based on the phosphonoformate inhibition assay (J Med Virol 12: 61-70, 1983). In the micromethod, sample volume is reduced to 120 microL and the ultracentrifugation step is eliminated. The method allows good discrimination between serum infected with hepatitis B virus and uninfected serum. The cutoff value for rate of nucleotide incorporation, based on assays of 41 serum specimens negative for hepatitis B serological markers, was about 15 nU/L (90th percentile). Serum containing hepatitis B surface and antigens exhibited rates of phosphonoformate-inhibitive nucleotide incorporation of 150 (SD 150) nU/L, with an upper 90th percentile range of 17 to 667 nU/L (n = 41). The micromethod makes use of commercially available [32P]dCTP (specific activity about 7000 kCi/mol). 125I-labeled dCTP was found to be unsuitable for this assay. Human DNA polymerases in serum are detected by this method but are excluded from the phosphonoformate-inhibitive fraction.


Sign in / Sign up

Export Citation Format

Share Document