scholarly journals Role of laser powder bed fusion process parameters in crystallographic texture of additive manufactured Nb-48Ti alloy

Author(s):  
Rafael de Moura Nobre ◽  
Willy Ank de Morais ◽  
Matheus Tavares Vasques ◽  
Jhoan Guzmán ◽  
Daniel Luiz Rodrigues Junior ◽  
...  
Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1064
Author(s):  
Shinya Hibino ◽  
Tsubasa Todo ◽  
Takuya Ishimoto ◽  
Ozkan Gokcekaya ◽  
Yuichiro Koizumi ◽  
...  

The influence of various laser powder bed fusion (LPBF) process parameters on the crystallographic textures and mechanical properties of a typical Ni-based solid-solution strengthened alloy, Hastelloy-X, was examined. Samples were classified into four groups based on the type of crystallographic texture: single crystalline-like microstructure with <100>//build direction (BD) (<100>-SCM), single crystalline-like microstructure with <110>//BD (<110>-SCM), crystallographic lamellar microstructure (CLM), or polycrystalline microstructure (PCM). These four crystallographic textures were realized in Hastelloy-X for the first time here to the best of our knowledge. The mechanical properties of the samples varied depending on their texture. The tensile properties were affected not only by the Schmid factor but also by the grain size and the presence of lamellar boundaries (grain boundaries). The lamellar boundaries at the interface between the <110>//BD oriented main layers and the <100>//BD-oriented sub-layers of CLM contributed to the resistance to slip transmission and the increased proof stress. It was possible to control a wide range of crystallographic microstructures via the LPBF process parameters, which determines the melt pool morphology and solidification behavior.


Author(s):  
Christopher U Brown ◽  
Gregor Jacob ◽  
Antonio Possolo ◽  
Carlos Beauchamp ◽  
Max Peltz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document