A secure and efficient data sharing scheme based on blockchain in industrial Internet of Things

2020 ◽  
Vol 167 ◽  
pp. 102710 ◽  
Author(s):  
Jiancheng Chi ◽  
Yu Li ◽  
Jing Huang ◽  
Jing Liu ◽  
Yingwei Jin ◽  
...  
2021 ◽  
Vol 17 (2) ◽  
pp. 1416-1427
Author(s):  
Cheng Huang ◽  
Dongxiao Liu ◽  
Jianbing Ni ◽  
Rongxing Lu ◽  
Xuemin Shen

2019 ◽  
Vol 6 (5) ◽  
pp. 8681-8691 ◽  
Author(s):  
Yinbin Miao ◽  
Qiuyun Tong ◽  
Kim-Kwang Raymond Choo ◽  
Ximeng Liu ◽  
Robert H. Deng ◽  
...  

2021 ◽  
Vol 11 (16) ◽  
pp. 7547
Author(s):  
Henning Baars ◽  
Ann Tank ◽  
Patrick Weber ◽  
Hans-Georg Kemper ◽  
Heiner Lasi ◽  
...  

The collection and analysis of industrial Internet of Things (IIoT) data offer numerous opportunities for value creation, particularly in manufacturing industries. For small and medium-sized enterprises (SMEs), many of those opportunities are inaccessible without cooperation across enterprise borders and the sharing of data, personnel, finances, and IT resources. In this study, we suggest so-called data cooperatives as a novel approach to such settings. A data cooperative is understood as a legal unit owned by an ecosystem of cooperating SMEs and founded for supporting the members of the cooperative. In a series of 22 interviews, we developed a concept for cooperative IIoT ecosystems that we evaluated in four workshops, and we are currently implementing an IIoT ecosystem for the coolant management of a manufacturing environment. We discuss our findings and compare our approach with alternatives and its suitability for the manufacturing domain.


2020 ◽  
Author(s):  
Karthik Muthineni

The new industrial revolution Industry 4.0, connecting manufacturing process with digital technologies that can communicate, analyze, and use information for intelligent decision making includes Industrial Internet of Things (IIoT) to help manufactures and consumers for efficient controlling and monitoring. This work presents the design and implementation of an IIoT ecosystem for smart factories. The design is based on Siemens Simatic IoT2040, an intelligent industrial gateway that is connected to modbus sensors publishing data onto Network Platform for Internet of Everything (NETPIE). The design demonstrates the capabilities of Simatic IoT2040 by taking Python, Node-Red, and Mosca into account that works simultaneously on the device.


Author(s):  
С.Л. Добрынин ◽  
В.Л. Бурковский

Произведен обзор технологий в рамках концепции четвертой промышленной революции, рассмотрены примеры реализации новых моделей управления технологическими процессами на базе промышленного интернета вещей. Описано техническое устройство основных подсистем системы мониторинга и контроля, служащей для повышения осведомленности о фактическом состоянии производственных ресурсов в особенности станков и аддитивного оборудования в режиме реального времени. Архитектура предлагаемой системы состоит из устройства сбора данных (УСД), реализующего быстрый и эффективный сбор данных от станков и шлюза, передающего ликвидную часть информации в облачное хранилище для дальнейшей обработки и анализа. Передача данных выполняется на двух уровнях: локально в цехе, с использованием беспроводной сенсорной сети (WSN) на базе стека протоколов ZigBee от устройства сбора данных к шлюзам и от шлюзов в облако с использованием интернет-протоколов. Разработан алгоритм инициализации протоколов связи между устройством сбора данных и шлюзом, а также алгоритм выявления неисправностей в сети. Расчет фактического времени обработки станочных подсистем позволяет более эффективно планировать профилактическое обслуживание вместо того, чтобы выполнять задачи обслуживания в фиксированные интервалы без учета времени использования оборудования We carried out a review of technologies within the framework of the concept of the fourth industrial revolution; we considered examples of the implementation of new models of process control based on the industrial Internet of things. We described the technical structure of the main subsystems of the monitoring and control system to increase awareness of the actual state of production resources in particular machine tools and additive equipment in real time. The architecture of the proposed system consists of a data acquisition device (DAD) that implements fast and efficient data collection from machines and a gateway that transfers the liquid part of information to the cloud storage for further processing and analysis. We carried out the data transmission at two levels, locally in the workshop, using a wireless sensor network (WSN) based on ZigBee protocol stack from the data acquisition device to the gateways and from the gateways to the cloud using Internet protocols. An algorithm was developed for initializing communication protocols between a data acquisition device and a gateway, as well as an algorithm for detecting network malfunctions. Calculating the actual machining time of machine subsystems allows us to more efficiently scheduling preventive maintenance rather than performing maintenance tasks at fixed intervals without considering equipment usage


Sign in / Sign up

Export Citation Format

Share Document