Glatiramer acetate increases T- and B -regulatory cells and decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) in an animal model of multiple sclerosis

2020 ◽  
Vol 345 ◽  
pp. 577281 ◽  
Author(s):  
Rina Aharoni ◽  
Raya Eilam ◽  
Nofar Schottlender ◽  
Lihi Radomir ◽  
Sandra Leistner-Segal ◽  
...  
2010 ◽  
Vol 28 (7) ◽  
pp. 1196-1202 ◽  
Author(s):  
Krishna S. Gunturu ◽  
Kenneth R. Meehan ◽  
Todd A. Mackenzie ◽  
Todd S. Crocenzi ◽  
David McDermott ◽  
...  

Purpose Recovery of lymphocyte populations after lymphocyte depletion is implicated in therapeutic immune pathways in animal models and in patients with cancer. We sought to evaluate the effects of chemotherapy-induced lymphodepletion followed by granulocyte-macrophage colony-stimulating factor (GM-CSF) and high-dose interleukin-2 (IL-2) therapy on clinical response and the recovery of lymphocyte subcompartments in patients with metastatic melanoma. Patients and Methods This was a two-stage phase II trial design. Patients with measurable metastatic melanoma were treated with intravenous cyclophosphamide (60 mg/kg, days 1 and 2) and fludarabine (25 mg/m2, day 3 through 7) followed by two 5-day courses of intravenous high-dose bolus IL-2 (600,000 U/kg; days 8 through 12 and 21 through 25). GM-CSF (250 μg/m2/d beginning day 8) was given until granulocyte recovery. Lymphocyte recovery profiles were determined by flow cytometric phenotyping at regular intervals, and clinical outcome was assessed by Response Evaluation Criteria in Solid Tumors (RECIST). Results The trial was stopped at the end of stage 1 with four of 18 objective responses noted. Twelve patients had detailed lymphocyte subcompartments evaluated. After lymphodepletion, we observed an induction of regulatory cells (CD4+ T regulatory cells; CD8+ T suppressor cells) and of T memory cells (CD8+ T central memory cells; T effector memory RA+ cells). Expansion of circulating melanoma-specific CD8+ cells was observed in one of four HLA-A2-positive patients. Conclusion Chemotherapy-induced lymphodepletion modulates the homeostatic repopulation of the lymphocyte compartment and influences recovering lymphocyte subpopulations. Clinical activity seems similar to standard high-dose aldesleukin alone.


2001 ◽  
Vol 194 (7) ◽  
pp. 873-882 ◽  
Author(s):  
Jonathan L. McQualter ◽  
Rima Darwiche ◽  
Christine Ewing ◽  
Manabu Onuki ◽  
Thomas W. Kay ◽  
...  

Experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis, can be induced by immunization with a number of myelin antigens. In particular, myelin oligodendrocyte glycoprotein, a central nervous system (CNS)-specific antigen expressed on the myelin surface, is able to induce a paralytic MS-like disease with extensive CNS inflammation and demyelination in several strains of animals. Although not well understood, the egress of immune cells into the CNS in EAE is governed by a complex interplay between pro and antiinflammatory cytokines and chemokines. The hematopoietic growth factor, granulocyte macrophage colony-stimulating factor (GM-CSF), is considered to play a central role in maintaining chronic inflammation. The present study was designed to investigate the previously unexplored role of GM-CSF in autoimmune-mediated demyelination. GM-CSF−/− mice are resistant to EAE, display decreased antigen-specific proliferation of splenocytes, and fail to sustain immune cell infiltrates in the CNS, thus revealing key activities for GM-CSF in the development of inflammatory demyelinating lesions and control of migration and/or proliferation of leukocytes within the CNS. These results hold implications for the pathogenesis of inflammatory and demyelinating diseases and may provide the basis for more effective therapies for inflammatory diseases, and more specifically for multiple sclerosis.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 611 ◽  
Author(s):  
Kelly L. Monaghan ◽  
Edwin C.K. Wan

Multiple sclerosis (MS) is an immune-mediated disease that predominantly impacts the central nervous system (CNS). Animal models have been used to elucidate the underpinnings of MS pathology. One of the most well-studied models of MS is experimental autoimmune encephalomyelitis (EAE). This model was utilized to demonstrate that the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) plays a critical and non-redundant role in mediating EAE pathology, making it an ideal therapeutic target. In this review, we will first explore the role that GM-CSF plays in maintaining homeostasis. This is important to consider, because any therapeutics that target GM-CSF could potentially alter these regulatory processes. We will then focus on current findings related to the function of GM-CSF signaling in EAE pathology, including the cell types that produce and respond to GM-CSF and the role of GM-CSF in both acute and chronic EAE. We will then assess the role of GM-CSF in alternative models of MS and comment on how this informs the understanding of GM-CSF signaling in the various aspects of MS immunopathology. Finally, we will examine what is currently known about GM-CSF signaling in MS, and how this has promoted clinical trials that directly target GM-CSF.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jani Lappalainen ◽  
Nicolas Yeung ◽  
Su D. Nguyen ◽  
Matti Jauhiainen ◽  
Petri T. Kovanen ◽  
...  

AbstractIn atherosclerotic lesions, blood-derived monocytes differentiate into distinct macrophage subpopulations, and further into cholesterol-filled foam cells under a complex milieu of cytokines, which also contains macrophage-colony stimulating factor (M-CSF) and granulocyte–macrophage-colony stimulating factor (GM-CSF). Here we generated human macrophages in the presence of either M-CSF or GM-CSF to obtain M-MØ and GM-MØ, respectively. The macrophages were converted into cholesterol-loaded foam cells by incubating them with acetyl-LDL, and their atheroinflammatory gene expression profiles were then assessed. Compared with GM-MØ, the M-MØ expressed higher levels of CD36, SRA1, and ACAT1, and also exhibited a greater ability to take up acetyl-LDL, esterify cholesterol, and become converted to foam cells. M-MØ foam cells expressed higher levels of ABCA1 and ABCG1, and, correspondingly, exhibited higher rates of cholesterol efflux to apoA-I and HDL2. Cholesterol loading of M-MØ strongly suppressed the high baseline expression of CCL2, whereas in GM-MØ the low baseline expression CCL2 remained unchanged during cholesterol loading. The expression of TNFA, IL1B, and CXCL8 were reduced in LPS-activated macrophage foam cells of either subtype. In summary, cholesterol loading converged the CSF-dependent expression of key genes related to intracellular cholesterol balance and inflammation. These findings suggest that transformation of CSF-polarized macrophages into foam cells may reduce their atheroinflammatory potential in atherogenesis.


Neonatology ◽  
2021 ◽  
pp. 1-7
Author(s):  
Verena Schulte ◽  
Alexandra Sipol ◽  
Stefan Burdach ◽  
Esther Rieger-Fackeldey

<b><i>Background:</i></b> The granulocyte-macrophage-colony-stimulating factor (GM-CSF) plays an important role in surfactant homeostasis. β<sub>C</sub> is a subunit of the GM-CSF receptor (GM-CSF-R), and its activation mediates surfactant catabolism in the lung. β<sub>IT</sub> is a physiological, truncated isoform of β<sub>C</sub> and is known to act as physiological inhibitor of β<sub>C</sub>. <b><i>Objective:</i></b> The aim of this study was to determine the ratio of β<sub>IT</sub> and β<sub>C</sub> in the peripheral blood of newborns and its association with the degree of respiratory failure at birth. <b><i>Methods:</i></b> We conducted a prospective cohort study in newborns with various degrees of respiratory impairment at birth. Respiratory status was assessed by a score ranging from no respiratory impairment (0) to invasive respiratory support (3). β<sub>IT</sub> and β<sub>C</sub> expression were determined in peripheral blood cells by real-time PCR. β<sub>IT</sub> expression, defined as the ratio of β<sub>IT</sub> and β<sub>C</sub>, was correlated with the respiratory score. <b><i>Results:</i></b> β<sub>IT</sub> expression was found in all 59 recruited newborns with a trend toward higher β<sub>IT</sub> in respiratory ill (score 2, 3) newborns than respiratory healthy newborns ([score 0, 1]; <i>p</i> = 0.066). Seriously ill newborns (score 3) had significantly higher β<sub>IT</sub> than healthy newborns ([score 0], <i>p</i> = 0.010). Healthy preterm infants had significantly higher β<sub>IT</sub> expression than healthy term infants (<i>p</i> = 0.019). <b><i>Conclusions:</i></b> β<sub>IT</sub> is expressed in newborns with higher expression in respiratory ill than respiratory healthy newborns. We hypothesize that β<sub>IT</sub> may have a protective effect in postnatal pulmonary adaptation acting as a physiological inhibitor of β<sub>C</sub> and, therefore, maintaining surfactant in respiratory ill newborns.


Blood ◽  
1989 ◽  
Vol 74 (8) ◽  
pp. 2652-2656 ◽  
Author(s):  
T Gesner ◽  
RA Mufson ◽  
KJ Turner ◽  
SC Clark

Abstract Granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) each bind specifically to a small number of high- affinity receptors present on the surface of the cells of the acute myelogenous leukemia line, KG-1. Through chemical cross-linking of IL-3 and GM-CSF to KG-1 cells, we identified distinct binding proteins for each of these cytokines with approximate molecular masses of 69 and 93 Kd, respectively. Although these two binding proteins are distinct, GM- CSF and IL-3 compete with each other for binding to KG-1 cells. Other cell lines, which express receptors for either factor but not for both do not display this cross-competition for binding with IL-3 and GM-CSF. These findings imply that distinct IL-3 and GM-CSF binding proteins are expressed on the cell surface and that an association exists between these proteins on KG-1 cells.


Blood ◽  
1996 ◽  
Vol 88 (4) ◽  
pp. 1206-1214 ◽  
Author(s):  
RL Rosen ◽  
KD Winestock ◽  
G Chen ◽  
X Liu ◽  
L Hennighausen ◽  
...  

Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces immediate effects in monocytes by activation of the Janus kinase (JAK2) and STAT transcription factor (STAT5) pathway. Recent studies have identified homologues of STAT5, STAT5A, and STAT5B, as well as lower molecular weight variants of STAT5. To define the activation of the STAT5 homologues and lower molecular weight variant in human monocytes and monocytes differentiated into macrophages by culture in macrophage- CSF (M-CSF), we measured the GM-CSF induced tyrosine phosphorylation of STAT5A, STAT5B, and any lower molecular weight STAT5 isoforms. Freshly isolated monocytes expressed 94-kD STAT5A, 92-kD STAT5B, and an 80-kD STAT5A molecule. Whereas 94-kD STAT5A was clearly tyrosine phosphorylated and bound to the enhancer element, the gamma response region (GRR), of the Fc gamma RI gene, substantially less tyrosine phosphorylated STAT5B bound to the immobilized GRR element. Macrophages lost their ability to express the 80-kD STAT5A protein, but retained their ability to activate STAT5A. STAT5A-STAT5A homodimers and STAT5A- STAT5B heterodimers formed in response to GM-CSF. Therefore, activation of STAT5A predominates compared to STAT5B when assayed by direct immunoprecipitation and by evaluation of bound STATs to immobilized GRR. Selective activation of STAT5 homologues in addition to generation of lower molecular isoforms may provide specificity and control to genes expressed in response to cytokines such as GM-CSF.


2008 ◽  
Vol 68 (5) ◽  
pp. 721-728 ◽  
Author(s):  
C Plater-Zyberk ◽  
L A B Joosten ◽  
M M A Helsen ◽  
M I Koenders ◽  
P A Baeuerle ◽  
...  

Objective:A pathogenic role for granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin (IL)17 in rheumatoid arthritis (RA) has been suggested. In previously published work, the therapeutic potentials of GM-CSF and IL17 blockade in arthritis have been described. In the present study, the simultaneous blockade of both pathways in a mouse model for chronic arthritis was investigated to identify whether this double blockade provides a superior therapeutic efficacy.Methods:A chronic relapsing arthritis was induced in C57Bl/6 wild type (WT) and C57Bl/6 genetically deficient for IL17 receptor (IL17R knockout (KO)) mice by intra-articular injection of Streptococcal cell wall (SCW) fragments into knees on days 0, 7, 14 and 21. Treatments (intraperitoneal) were given weekly starting on day 14. Animals were analysed for inflammation, joint damage and a range of inflammatory mediators.Results:Joint swelling and cartilage damage were significantly reduced in the IL17R KO mice and in WT mice receiving anti-GM-CSF neutralising mAb 22E9 compared to isotype control antibodies. The therapeutic effect was significantly more pronounced in mice where IL17 and GM-CSF pathways were inhibited (eg, IL17R KO mice treated with 22E9 mAb). Tumour necrosis factor (TNF)α blockade had essentially no effect.Conclusion:Our data further support the therapeutic potentials of GM-CSF and IL17 blockade in a RA model that is no longer responsive to an established TNFα antagonist, moreover, our results suggest that concomitant inhibition of both pathways may provide the basis for a highly effective treatment of chronic RA in patients that are resistant to treatment by TNFα inhibitors.


Sign in / Sign up

Export Citation Format

Share Document