The effect of zirconium content on in vitro bioactivity, biological behavior and antibacterial activity of sol-gel derived 58S bioactive glass

2020 ◽  
Vol 546 ◽  
pp. 120262 ◽  
Author(s):  
Amirhossein Moghanian ◽  
Mohammadamin Zohourfazeli ◽  
Mahzad Haji Mahdi Tajer
Author(s):  
Amirhossein Moghanian ◽  
Saba Nasiripour ◽  
Atiyyeh Koohfar ◽  
Mohammad Sajjadnejad ◽  
SeyedMohammad Hosseini ◽  
...  

2013 ◽  
Vol 19 (2) ◽  
pp. 231-239 ◽  
Author(s):  
Nima Nabian ◽  
Maedeh Delavar ◽  
Mahmood Rabiee ◽  
Mohsen Jahanshahi

The paper reports the first attempt at changing cooling treatment of synthesizing method in order to investigate its effect on the physical properties of sol-gel derived nano bioactive glass-ceramic in the system 58SiO2-33CaO-9P2O5 (wt.%). We hypothesized that the method of cooling may affect the properties of nano bioactive glass-ceramic. To test this hypothesis, two different method of cooling treatment was applied after calcinations in synthesizing method. Both quenched and unquenched nano bioactive glass-ceramics were soaked in Ringer?s solution with bovine serum albumin (BSA) for bioactivity evaluation. The obtained samples were analyzed for their composition, crystalinity and morphology through X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), surface electron microscope (SEM) and transmission electron microscope (TEM). The SEM images showed that the morphology of nano bioactive glass-ceramics was completely changed by quenching process. Results of in vitro bioactivity evaluation revealed that the unquenched attains faster apatite formation ability than the quenched sample. Other properties of these two morphologically different nano bioactive glass-ceramics were strongly discussed.


2011 ◽  
Vol 493-494 ◽  
pp. 49-54 ◽  
Author(s):  
George S. Polymeris ◽  
Ourania Menti Goudouri ◽  
Konstantinos M. Paraskevopoulos ◽  
George Kitis

Results of the present study provide strong indications towards the effective application of the 110oC Thermoluminescence (TL) peak in discriminating between different bioactive responses for the case of the 58S bioactive glass. The in vitro bioactivity of this glass in the form of powder in SBF solution was tested for various immersion times, ranging between 0 and 6 days. This TL peak is ubiquitously present in all 58S samples, for all immersion times. The intensity of the110oC TL peak was proven to be very sensitive to the different bioactive responses, indicating a strongly decreasing pattern with increasing immersion time in SBF, easily identifying thus the loss of silica. This loss is reflected to the decrease of the 110oC TL peak intensity, which appears to be fast even for the shorter immersion times. The 110oC TL glow peak intensity and sensitization could also be yielding a time scale regarding the beginning of some among the several stages included in the bioactivity sequence.


2021 ◽  
Vol 19 ◽  
pp. 228080002110409
Author(s):  
Rui Zhao ◽  
Lifen Shi ◽  
Lin Gu ◽  
Xusheng Qin ◽  
Zaizhi Song ◽  
...  

A series of bioactive glass scaffolds doped with SrO or ZnO (0, 5, and 10 mol%) were synthesized by the foam replica and melting method. The thermodynamic evolution, phase composition, microstructure, ion release, in vitro bioactivity, and oxygen density of the scaffolds were characterized. The proliferation of murine long bone osteocyte Y4 cells was studied by cell culture. The survival rate of the BGs evaluated the antibacterial activity and Escherichia coli strains in co-culture. The results indicated that the process window decreases with the increase of dopants. All the samples have a pore structure size of 200–400 μm. When the scaffolds were immersed in simulated body fluid for 28 days, hydroxyapatite formation was not affected, but the degradation process was retarded. The glass network packing and ionic radii variations of the substitution ions control surface degradation, glass dissolution, and ion release. MTT results revealed that 5Sr-BG had a significant effect on promoting cell proliferation and none of the BGs were cytotoxicity. Sr-BGs and Zn-BGs exhibited significantly inhibited growth against E. coli bacterial strains. Generally, these results showed the 5Sr-BG scaffold with high vitro bioactivity, cell proliferation, and antibacterial property is an important candidate material for bone tissue regeneration and repair.


2017 ◽  
Vol 43 (17) ◽  
pp. 14880-14890 ◽  
Author(s):  
Amirhossein Moghanian ◽  
Sadegh Firoozi ◽  
Mohammadreza Tahriri

Sign in / Sign up

Export Citation Format

Share Document