Synthesis of rare earth phosphates in molten LiCl–KCl eutectic: Application to preliminary treatment of chlorinated waste streams containing fission products

2008 ◽  
Vol 381 (3) ◽  
pp. 284-289 ◽  
Author(s):  
Damien Hudry ◽  
Isabelle Bardez ◽  
Aydar Rakhmatullin ◽  
Catherine Bessada ◽  
Florence Bart ◽  
...  
1985 ◽  
Vol 91 (2) ◽  
pp. 291-296
Author(s):  
B. S. Tomar ◽  
H. Naik ◽  
A. Ramaswamy ◽  
Satya Prakash

Author(s):  
V. Hanusˇi´k ◽  
Z. Kusovska´ ◽  
J. Bala´zˇ ◽  
A. Mrsˇkova´

In Slovakia, low and intermediate level radioactive wastes are disposed in a near-surface repository at Mochovce site. The repository, which was commissioned in September 2001, has a disposal capacity 22,320 m3. It is a vault-type concrete structure repository with reinforced concrete containers as the final waste packages. The Mochovce repository is designed to receive acceptable radioactive wastes from decommissioned A-1 power plant at Jaslovske´ Bohunice, operational waste from NPPs V-1 and V-2 at Jaslovske´ Bohunice site and NPP Mochovce, as well as institutional radioactive wastes. Generally, calculation endpoint of disposal facilities performance assessment is radiological impact on humans and environment. In that case, starting points of assessment are the waste activity concentrations and inventory activity. The acceptance of radioactive waste in Mochovce repository is one of the many elements that directly contribute to the safety of the disposal system. In Mochovce repository safety analysis, end points are both the concentration per package and total activity values. On the other hand, radiological protection criteria are the starting points of the calculation. This approach was developed and applied because the actual inventory that will be disposed of is highly uncertain. As a result of the accidents, the primary circuit was contaminated by fission products. Some auxiliary circuits and facilities were also contaminated. The complicated problem is the relatively high content of long-lived radionuclides (inclusive transuranic elements) in some waste streams. After two technological incidents at NPP A-1 uncertainties in waste inventory are large because of variability in the types of waste streams and variability in the quality and completeness of the waste characterization data. This paper presents the philosophy of safety analysis, development of scenarios, their modelling and approach that have been used to derive waste acceptance criteria, specifically limits of activity. The approach consists of the determination of radionuclides important for safety, the use of relevant safety scenarios, the setting of dose limits associated with scenarios, the calculation of activity limits and application of the simple summation rule. Finally, information is provided about short operation of the repository.


Author(s):  
Ippei Amamoto ◽  
Naoki Mitamura ◽  
Tatsuya Tsuzuki ◽  
Yasushi Takasaki ◽  
Atsushi Shibayama ◽  
...  

This study is carried out to make the pyroprocessing hold a competitive advantage from the viewpoint of environmental load reduction and economical improvement. As one of the measures to reduce the volume of the high-level radioactive waste (HLW), the phosphate conversion method is applied for removal of fission products (FP) from the melt, referring to the spent electrolyte in this paper. Among the removing target chlorides in the spent electrolyte i.e., alkali metals, alkaline earth metals and rare earth elements, only the rare earth elements and lithium form the precipitates as insoluble phosphates by reaction with Li3PO4. The sand filtration method was applied to separate FP precipitates from the spent electrolyte. The iron phosphate glass (IPG) powder, which is a compatible material for the immobilization of FP, was used as a filter medium. After filtration experiment, it was proven that insoluble FP could almost be completely removed from the spent electrolyte. Subsequently, we attempted to separate the dissolved FP from the spent electrolyte. The IPG was being used once again but this time as a sorbent instead. This is possible because the IPG has some unique characteristics, e.g., changing the valence of iron, which is one of its network modifiers due to its manufacturing temperature. Therefore, it would be likely to sorb some FP when the chemical condition of IPG is unstable. We produced three kinds of IPG under different manufacturing temperature and confirmed that those glasses could sorb FP as anticipated. According to the experimental result, its sorption efficiency of metal cations was attained at around 20–40%.


2004 ◽  
Vol 824 ◽  
Author(s):  
S. I. Rovnyi ◽  
G. M. Medvedev ◽  
A. S. Aloy ◽  
T. I. Koltsova ◽  
S. E. Samoylov

AbstractOne of the high levels of actinide, and in particular Cm, waste streams at the Russian radiochemical Production Association (PA) Mayak was generated during spent fuel reprocessing. Using oxalate precipitation, the rare earth elements (REE) and transuranic elements (TRU) settled out in the form of oxalate residues. Due to in high REE contents in this residue, the mineral-like matrix based on (REE)PO4 solid solution, with monlclinic monazite structure have been proposed to use as a suitable ceramics form for final actinide immobilization. For this purpose the synthetic REE oxalates were first transformed into REE orthophosphates in a thin-film evaporator (TFE). Then the (REE)PO4 powder was compacted both by either hot uniaxial pressing (HUP) or cold uniaxial pressing followed by sintering (CUP). This ceramic with the monazite structure has a high density and exhibits chemical durability by leaching.


Atomic Energy ◽  
1957 ◽  
Vol 3 (7) ◽  
pp. 729-733
Author(s):  
V. K. Gorshkov ◽  
R. N. Ivanov ◽  
G. M. Kukavadze ◽  
I. A. Reformatsky

Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 867 ◽  
Author(s):  
Maximilian Reimer ◽  
Heike Schenk-Mathes ◽  
Matthias Hoffmann ◽  
Tobias Elwert

In recent years, China’s dominant role in the rare earth market and the associated impacts have strengthened the interest in the recovery of rare earth elements (REE) from secondary resources. Therefore, numerous research activities have been initiated aiming at the recovery of REEs from different types of waste streams, which includes, inter alia, neodymium-iron-boron (NdFeB) magnets. Although several research projects have successfully been completed, most experts do not expect an industrial implementation in Europe within the next years. This article analyses the reasons for this situation, addressing the availability of sufficient amounts of NdFeB wastes, the technology readiness level of the developed processes in Europe, as well as the economic aspects. Based on these analyses, an estimation of a realistic timeframe for the industrial implementation of NdFeB recycling in Europe is deduced and critically discussed.


Sign in / Sign up

Export Citation Format

Share Document