scholarly journals The minimal free resolution of a class of square-free monomial ideals

2004 ◽  
Vol 189 (1-3) ◽  
pp. 263-278 ◽  
Author(s):  
Rahim Zaare-Nahandi ◽  
Rashid Zaare-Nahandi
2001 ◽  
Vol 89 (1) ◽  
pp. 117 ◽  
Author(s):  
V Reiner ◽  
V Welker

We give an elementary description of the maps in the linear strand of the minimal free resolution of a square-free monomial ideal, that is, the Stanley-Reisner ideal associated to a simplicial complex $\Delta$. The description is in terms of the homology of the canonical Alexander dual complex $\Delta^*$. As applications we are able to prove for monomial ideals and $j=1$ a conjecture of J. Herzog giving lower bounds on the number of $i$-syzygies in the linear strand of $j^{th}$-syzygy modules show that the maps in the linear strand can be written using only $\pm 1$ coefficients if $\Delta^*$ is a pseudomanifold exhibit an example where multigraded maps in the linear strand cannot be written using only $\pm 1$ coefficients compute the entire resolution explicitly when $\Delta^*$ is the complex of independent sets of a matroid


2011 ◽  
Vol 18 (spec01) ◽  
pp. 925-936
Author(s):  
Rahim Zaare-Nahandi

In this paper, by a modification of a previously constructed minimal free resolution for a transversal monomial ideal, the Betti numbers of this ideal is explicitly computed. For convenient characteristics of the ground field, up to a change of coordinates, the ideal of t-minors of a generic pluri-circulant matrix is a transversal monomial ideal. Using a Gröbner basis for this ideal, it is shown that the initial ideal of a generic pluri-circulant matrix is a stable monomial ideal when the matrix has two square blocks. By means of the Eliahou-Kervaire resolution for stable monomial ideals, the Betti numbers of this initial ideal is computed and it is proved that for some significant values of t, this ideal has the same Betti numbers as the corresponding transversal monomial ideal. The ideals treated in this paper naturally arise in the study of generic singularities of algebraic varieties.


10.37236/69 ◽  
2009 ◽  
Vol 16 (2) ◽  
Author(s):  
Uwe Nagel ◽  
Victor Reiner

We present two new problems on lower bounds for Betti numbers of the minimal free resolution for monomial ideals generated in a fixed degree. The first concerns any such ideal and bounds the total Betti numbers, while the second concerns ideals that are quadratic and bihomogeneous with respect to two variable sets, but gives a more finely graded lower bound. These problems are solved for certain classes of ideals that generalize (in two different directions) the edge ideals of threshold graphs and Ferrers graphs. In the process, we produce particularly simple cellular linear resolutions for strongly stable and squarefree strongly stable ideals generated in a fixed degree, and combinatorial interpretations for the Betti numbers of other classes of ideals, all of which are independent of the coefficient field.


2006 ◽  
Vol 13 (3) ◽  
pp. 411-417
Author(s):  
Edoardo Ballico

Abstract Let 𝑋 be a smooth and connected projective curve. Assume the existence of spanned 𝐿 ∈ Pic𝑎(𝑋), 𝑅 ∈ Pic𝑏(𝑋) such that ℎ0(𝑋, 𝐿) = ℎ0(𝑋, 𝑅) = 2 and the induced map ϕ 𝐿,𝑅 : 𝑋 → 𝐏1 × 𝐏1 is birational onto its image. Here we study the following question. What can be said about the morphisms β : 𝑋 → 𝐏𝑅 induced by a complete linear system |𝐿⊗𝑢⊗𝑅⊗𝑣| for some positive 𝑢, 𝑣? We study the homogeneous ideal and the minimal free resolution of the curve β(𝑋).


2003 ◽  
Vol 10 (1) ◽  
pp. 37-43
Author(s):  
E. Ballico

Abstract We consider the vanishing problem for higher cohomology groups on certain infinite-dimensional complex spaces: good branched coverings of suitable projective spaces and subvarieties with a finite free resolution in a projective space P(V ) (e.g. complete intersections or cones over finitedimensional projective spaces). In the former case we obtain the vanishing result for H 1. In the latter case the corresponding results are only conditional for sheaf cohomology because we do not have the corresponding vanishing theorem for P(V ).


2004 ◽  
Vol 56 (4) ◽  
pp. 716-741 ◽  
Author(s):  
Elena Guardo ◽  
Adam Van Tuyl

AbstractWe study the Hilbert functions of fat points in ℙ1× ℙ1. IfZ⊆ ℙ1× ℙ1is an arbitrary fat point scheme, then it can be shown that for everyiandjthe values of the Hilbert functionHZ(l,j) andHZ(i,l) eventually become constant forl≫ 0. We show how to determine these eventual values by using only the multiplicities of the points, and the relative positions of the points in ℙ1× ℙ1. This enables us to compute all but a finite number values ofHZwithout using the coordinates of points. We also characterize the ACM fat point schemes using our description of the eventual behaviour. In fact, in the case thatZ⊆ ℙ1× ℙ1is ACM, then the entire Hilbert function and its minimal free resolution depend solely on knowing the eventual values of the Hilbert function.


Author(s):  
K. W. Gruenberg

AbstractFor a ZG-lattice A, the nth partial free Euler characteristic εn(A) is defined as the infimum of all where F* varies over all free resolutions of A. It is shown that there exists a stably free resolution E* of A which realises εn(A) for all n≥0 and that the function n → εn(A) is ultimately polynomial no residue classes. The existence of E* is established with the help of new invariants σn(A) of A. These are elements in certain image groups of the projective class group of ZG. When ZG allows cancellation, E* is a minimal free resolution and is essentially unique. When A is periodic, E* is ultimately periodic of period a multiple of the projective period of A.


1990 ◽  
Vol 118 ◽  
pp. 203-216 ◽  
Author(s):  
Mitsuyasu Hashimoto

Let R be a Noetherian commutative ring with, unit element, and Xij be variables with 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let S = R[xij] be the polynomial ring over R, and It be the ideal in S, generated by the t × t minors of the generic matrix (xij) ∈ Mm, n(S). For many years there has been considerable interest in finding a minimal free resolution of S/It, over arbitrary base ring R. If we have a minimal free resolution P. over R = Z, the ring of integers, then R′ ⊗z P. is a resolution of S/It over the base ring R′.


Sign in / Sign up

Export Citation Format

Share Document