Preface to the special issue on Structure and dynamics of the Longmenshan fault zone

2020 ◽  
Vol 200 ◽  
pp. 104474
Author(s):  
Xiwei Xu ◽  
Jianshe Lei
2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Haiou Li ◽  
Xiwei Xu ◽  
Wentao Ma ◽  
Ronghua Xie ◽  
Jingli Yuan ◽  
...  

Three-dimensional P wave velocity models under the Zipingpu reservoir in Longmenshan fault zone are obtained with a resolution of 2 km in the horizontal direction and 1 km in depth. We used a total of 8589 P wave arrival times from 1014 local earthquakes recorded by both the Zipingpu reservoir network and temporary stations deployed in the area. The 3-D velocity images at shallow depth show the low-velocity regions have strong correlation with the surface trace of the Zipingpu reservoir. According to the extension of those low-velocity regions, the infiltration depth directly from the Zipingpu reservoir itself is limited to 3.5 km depth, while the infiltration depth downwards along the Beichuan-Yingxiu fault in the study area is about 5.5 km depth. Results show the low-velocity region in the east part of the study area is related to the Proterozoic sedimentary rocks. The Guanxian-Anxian fault is well delineated by obvious velocity contrast and may mark the border between the Tibetan Plateau in the west and the Sichuan basin in the east.


2020 ◽  
Vol 24 (6) ◽  
pp. 1175-1188
Author(s):  
Xiao-Ping Fan ◽  
Yi-Cheng He ◽  
Cong-Jie Yang ◽  
Jun-Fei Wang

AbstractBroadband teleseismic waveform data from 13 earthquakes recorded by 70 digital seismic stations were selected to evaluate the inhomogeneity parameters of the crustal medium in the southern Longmenshan fault zone and its adjacent regions using the teleseismic fluctuation wavefield method. Results show that a strong inhomogeneity exists beneath the study region, which can be divided into three blocks according to its structure and tectonic deformation features. These are known as the Sichuan-Qinghai Block, the Sichuan-Yunnan Block, and the Mid-Sichuan Block. The velocity fluctuation ratios of the three blocks are approximately 5.1%, 3.6%, and 5.1% in the upper crust and 5.1%, 3.8%, and 4.9% in the lower crust. The inhomogeneity correlation lengths of the three blocks are about 10.1 km, 14.0 km, and 10.7 km in the upper crust and 11.8 km, 17.0 km, and 11.8 km in the lower crust. The differences in the crustal medium inhomogeneity beneath the Sichuan-Yunnan Block, the Sichuan-Qinghai Block, and the Mid-Sichuan Block may be related to intensive tectonic movement and material flow in the crust and upper mantle.


2020 ◽  
Vol 307 ◽  
pp. 106557
Author(s):  
Huaizhong Yu ◽  
Jing Zhao ◽  
Xiaoxia Liu ◽  
Chen Yu ◽  
Chong Yue ◽  
...  

2019 ◽  
Vol 177 (1) ◽  
pp. 37-53 ◽  
Author(s):  
Reiken Matsushita ◽  
Kazutoshi Imanishi ◽  
Makiko Ohtani ◽  
Yasuto Kuwahara ◽  
Jiuhui Chen ◽  
...  

2014 ◽  
Vol 1010-1012 ◽  
pp. 1380-1386
Author(s):  
Wei Feng Wang ◽  
Chuan Hua Zhu ◽  
Yan Bin Qing ◽  
Xin Jian Shan

The Longmenshan fault zone has been a research hotspot, but fewer scholars have paid attention to its transverse faults. According to the analysis of regional tectonic, seismic activities, geomorphic features, remote sensing images, and deep geophysical data, combined with field studies, the existence, distribution and type of the transverse faults in the Longmenshan fault zone were demonstrated. Research shows that there are 9 transverse faults that lie parallel to each other approximately at ~50km intervals in the Longmenshan fault zone. And transverse faults can be divided into regional transverse faults and localized transverse faults with NW strike, nearly EW strike and nearly SN strike.


2014 ◽  
Vol 88 (5) ◽  
pp. 1592-1602 ◽  
Author(s):  
Chongyuan ZHANG ◽  
Manlu WU ◽  
Qunce CHEN ◽  
Chunting LIAO

Sign in / Sign up

Export Citation Format

Share Document