Spinal Cord Monitoring With Transcranial Motor Evoked Potentials in Patients With Neural Axis Abnormalities Undergoing Spinal Deformity Surgery

2013 ◽  
Vol 1 (3) ◽  
pp. 205-210 ◽  
Author(s):  
Ryan D. Muchow ◽  
Anna McClung ◽  
Patricia Rampy ◽  
Elizabeth Van Allen ◽  
Steven Sparagana ◽  
...  
2014 ◽  
Vol 13 (3) ◽  
pp. 247-254 ◽  
Author(s):  
Joseph Ferguson ◽  
Steven W. Hwang ◽  
Zachary Tataryn ◽  
Amer F. Samdani

Object Intraoperative monitoring of the spinal cord has become the standard of care during surgery for pediatric spinal deformity correction. The use of both somatosensory and motor evoked potentials has dramatically increased the sensitivity and specificity of detecting intraoperative neurophysiological changes to the spinal cord, which assists in the intraoperative decision-making process. The authors report on a large, single-center experience with neuromonitoring changes and outline the surgical management of patients who experience significant neuromonitoring changes during spinal deformity correction surgery. Methods The authors conducted a retrospective review of all cases involving pediatric patients who underwent spinal deformity correction surgery at Shriners Hospital for Children, Philadelphia, between January 2007 and March 2010. Five hundred nineteen consecutive cases were reviewed in which neuromonitoring was used, with 47 cases being identified as having significant changes in somatosensory evoked potentials, motor evoked potentials, or both. These cases were reviewed for patient demographic data and surgical characteristics. Results The incidence of significant neuromonitoring changes was 9.1% (47 of 519 cases), including 6 cases of abnormal Stagnara wake-up tests, of which 4 had corroborated postoperative neurological deficits (8.5% of 47 cases, 0.8% of 519). In response to neuromonitoring changes, wake-up tests were performed in 37 (79%) of 47 cases, hardware was adjusted in 15 (32%), anesthesiology interventions were reported in 5 (11%), hardware was removed in 5 (11%), the patient was successfully repositioned in 3 (6%), and the procedure was aborted in 13 (28%). In 1 of the 4 patients with new postoperative deficits, the deficit had fully resolved by the last follow-up; the other 3 patients had persistent neurological impairment as of the most recent follow-up examination. The authors observed a sensitivity of 100% for intraoperative neuromonitoring. Conclusions Due to the profound risks associated with spinal deformity surgery, intraoperative neurophysiological monitoring is an integral tool to warn of impending spinal cord injury. Intraoperative neuromonitoring appears to provide a safe and useful warning mechanism to minimize spinal cord injury that may arise during scoliosis correction surgery in pediatric patients.


2016 ◽  
Vol 151 (2) ◽  
pp. 509-517 ◽  
Author(s):  
Kazumasa Tsuda ◽  
Norihiko Shiiya ◽  
Daisuke Takahashi ◽  
Kazuhiro Ohkura ◽  
Katsushi Yamashita ◽  
...  

2021 ◽  
Vol 103-B (3) ◽  
pp. 547-552
Author(s):  
Ramanare Sibusiso Magampa ◽  
Robert Dunn

Aims Spinal deformity surgery carries the risk of neurological injury. Neurophysiological monitoring allows early identification of intraoperative cord injury which enables early intervention resulting in a better prognosis. Although multimodal monitoring is the ideal, resource constraints make surgeon-directed intraoperative transcranial motor evoked potential (TcMEP) monitoring a useful compromise. Our experience using surgeon-directed TcMEP is presented in terms of viability, safety, and efficacy. Methods We carried out a retrospective review of a single surgeon’s prospectively maintained database of cases in which TcMEP monitoring had been used between 2010 and 2017. The upper limbs were used as the control. A true alert was recorded when there was a 50% or more loss of amplitude from the lower limbs with maintained upper limb signals. Patients with true alerts were identified and their case history analyzed. Results Of the 299 cases reviewed, 279 (93.3%) had acceptable traces throughout and awoke with normal clinical neurological function. No patient with normal traces had a postoperative clinical neurological deficit. True alerts occurred in 20 cases (6.7%). The diagnoses of the alert group included nine cases of adolescent idiopathic scoliosis (AIS) (45%) and six of congenital scoliosis (30%). The incidence of deterioration based on diagnosis was 9/153 (6%) for AIS, 6/30 (20%) for congenital scoliosis, and 2/16 (12.5%) for spinal tuberculosis. Deterioration was much more common in congenital scoliosis than in AIS (p = 0.020). Overall, 65% of alerts occurred during rod instrumentation: 15% occurred during decompression of the internal apex in vertebral column resection surgery. Four alert cases (20%) awoke with clinically detectable neurological compromise. Conclusion Surgeon-directed TcMEP monitoring has a 100% negative predictive value and allows early identification of physiological cord distress, thereby enabling immediate intervention. In resource constrained environments, surgeon-directed TcMEP is a viable and effective method of intraoperative spinal cord monitoring. Level of evidence: III Cite this article: Bone Joint J 2021;103-B(3):547–552.


Sign in / Sign up

Export Citation Format

Share Document