Role of neutrophils and Kupffer cells in hepatic cells in hepatic infection: Do we have it wrong?

2004 ◽  
Vol 121 (2) ◽  
pp. 333
Author(s):  
D.R. Jeyarajah ◽  
M.L. Kielar ◽  
X. Zhou ◽  
P. Karimi ◽  
N.L. Frantz ◽  
...  
Keyword(s):  
10.2741/a455 ◽  
1999 ◽  
Vol 4 (4) ◽  
pp. d589-595 ◽  
Author(s):  
Abraham P Bautista

2020 ◽  
Vol 15 (1) ◽  
pp. 326-330
Author(s):  
Xing Liu ◽  
Bin Shi

AbstractLung cancer is one of the most prevalent malignancies worldwide. Local recurrence and distant metastasis remain the major causes of treatment failure. It has been recognized that the process of tumor growth and metastasis involves multiple interactions between tumor and host. Various biomarkers have been used for predicting tumor recurrence, metastasis, and prognosis in patients with lung cancer. However, these biomarkers are still controversial and require further validation. The relationship between malignancy and coagulation system disorders has been explored for more than a century. Fibrinogen is the most abundant plasma coagulation factor synthesized mainly by hepatic cells. Increased plasma fibrinogen levels were observed in various carcinomas such as gastric cancer, colon cancer, and pancreatic cancer. Recent studies have also investigated the role of fibrinogen in patients with lung cancer. This review aimed to address the role of fibrinogen in lung cancer.


2010 ◽  
Vol 63 (11-12) ◽  
pp. 827-832 ◽  
Author(s):  
Tatjana Radosavljevic ◽  
Dusan Mladenovic ◽  
Danijela Vucevic ◽  
Rada Jesic-Vukicevic

Introduction. Paracetamol is an effective analgesic/antipyretic drug when used at therapeutic doses. However, the overdose of paracetamol can cause severe liver injury and liver necrosis. The mechanism of paracetamol-induced liver injury is still not completely understood. Reactive metabolite formation, depletion of glutathione and alkylation of proteins are the triggers of inhibition of mitochondrial respiration, adenosine triphosphate depletion and mitochondrial oxidant stress leading to hepatocellular necrosis. Role of oxidative stress in paracetamol-induced liver injury. The importance of oxidative stress in paracetamol hepatotoxicity is controversial. Paracetamol induced liver injury cause the formation of reactive oxygen species. The potent sources of reactive oxygen are mitochondria, neutrophils, Kupffer cells and the enzyme xatnine oxidase. Free radicals lead to lipid peroxidation, enzymatic inactivation and protein oxidation. Role of mitochondria in paracetamol-induced oxidative stress. The production of mitochondrial reactive oxygen species is increased, and the glutathione content is decreased in paracetamol overdose. Oxidative stress in mitochondria leads to mito?chondrial dysfunction with adenosine triphosphate depletion, increase mitochondrial permeability transition, deoxyribonu?cleic acid fragmentation which contribute to the development of hepatocellular necrosis in the liver after paracetamol overdose. Role of Kupffer cells in paracetamol-induced liver injury. Paracetamol activates Kupffer cells, which then release numerous cytokines and signalling molecules, including nitric oxide and superoxide. Kupffer cells are important in peroxynitrite formation. On the other hand, the activated Kupffer cells release anti-inflammatory cytokines. Role of neutrophils in paracetamol-induced liver injury. Paracetamol-induced liver injury leads to the accumulation of neutrophils, which release lysosomal enzymes and generate superoxide anion radicals through the enzyme nicotinamide adenine dinucleotide phosphate oxidase. Hydrogen peroxide, which is influenced by the neutrophil-derived enzyme myeloperoxidase, generates hypochlorus acid as a potent oxidant. Role of peroxynitrite in paracetamol-induced oxidative stress. Superoxide can react with nitric oxide to form peroxynitrite, as a potent oxidant. Nitrotyrosine is formed by the reaction of tyrosine with peroxynitrite in paracetamol hepatotoxicity. Conclusion. Overdose of paracetamol may produce severe liver injury with hepatocellular necrosis. The most important mechanisms of cell injury are metabolic activation of paracetamol, glutathione depletion, alkylation of proteins, especially mitochondrial proteins, and formation of reactive oxygen/nitrogen species.


2005 ◽  
Vol 289 (3) ◽  
pp. R680-R687 ◽  
Author(s):  
Carlos Feleder ◽  
Vit Perlik ◽  
Ying Tang ◽  
Clark M. Blatteis

We reported previously that the onset of LPS-induced fever, irrespective of its route of administration, is temporally correlated with the appearance of LPS in the liver and that splenectomy significantly increases both the febrile response to LPS and the uptake of LPS by Kupffer cells (KC). To further evaluate the role of the spleen in LPS fever production, we ligated the splenic vein and, 7 and 30 days later, monitored the core temperature changes over 6 h after intraperitoneal (ip) injection of LPS (2 μg/kg). Both the febrile response and the uptake of LPS by KC were significantly augmented. Like splenectomy, splenic vein ligation (SVL) increased the febrile response and LPS uptake by KC until the collateral circulation developed, suggesting that the spleen may normally contribute an inhibitory factor that limits KC uptake of LPS and thus affects the febrile response. Subsequently, to verify the presence of this factor, we prepared splenic extracts from guinea pigs pretreated with LPS (8 μg/kg ip) or pyrogen-free saline, homogenized and ultrafiltered them, and injected them intravenously into splenectomized (Splex) guinea pigs pretreated with LPS (8 μg/kg ip). The results confirmed our presumption that the splenic extract from LPS-treated guinea pigs inhibits the exaggerated febrile response and the LPS uptake by the liver of Splex guinea pigs, indicating the presence of a putative splenic inhibitory factor, confirming the participation of the spleen in LPS-induced fever, and suggesting the existence of a novel antihyperpyretic mechanism. Preliminary data indicate that this factor is a lipid.


2013 ◽  
Vol 337 (1) ◽  
pp. 146
Author(s):  
Bhumika Thati ◽  
Andy Noble ◽  
Bernadette S. Creaven ◽  
Maureen Walsh ◽  
Malachy McCann ◽  
...  

Surgery Today ◽  
2021 ◽  
Author(s):  
Yuuki Nakata ◽  
Hiroshi Kono ◽  
Yoshihiro Akazawa ◽  
Kazuyoshi Hirayama ◽  
Hiroyuki Wakana ◽  
...  

2016 ◽  
Vol 9 (1) ◽  
pp. 41 ◽  
Author(s):  
Somyoth Sridurongrit

Tgf-Beta is a pleiotropic cytokine with diverse functions on hepatic cells. The well-known function of Tgf-Beta in pathogenesis of liver disease is to stimulate liver fibrosis that often precedes the onset of liver cancer. While Tgf-Beta-mediated fibrosis seems to make liver more prone to the development of liver cancer, Tgf-Beta suppresses initial malignant transformation of hepatic cells thru regulation of proliferation and apoptosis. On the other hand, Tgf-Beta has shown to act as an inducer of tumor development thru enhancement of metastatic process. Additionally, it has been shown that Tgf-Beta signaling in hepatocytes promotes hepatocarcinogenesis caused by certain genetic conditions. This review highlights observations that have improved an understanding of how Tgf-Beta contributes to the development of hepatocellular carcinoma.


1996 ◽  
Vol 134 (4) ◽  
pp. 513-518 ◽  
Author(s):  
Anita Boelen ◽  
Marianne C Platvoet-ter Schiphorst ◽  
Nico van Rooijen ◽  
Wilmar M Wiersinga

Boelen A, Platvoet-ter Schiphorst MC, van Rooijen N, Wiersinga WM. Selective macrophage depletion in the liver does not prevent the development of the sick euthyroid syndrome in the mouse. Eur J Endocrinol 1996;134:513–8. ISSN 0804–4643 A decreased serum triiodothyronine (T3) level is one of the main characteristics of the sick euthyroid syndrome, caused mainly by a decreased 5′-deiodination of thyroxine (T4) in the liver. Cytokines have been implicated in the pathogenesis of the changes in thyroid hormone metabolism during illness. We therefore investigated the role of cytokines produced by the liver macrophages (Kupffer cells) in the development of the sick euthyroid syndrome, which was induced in mice by a single injection of bacterial endotoxin (lipopolysaccharide) or by 24-h starvation. Experiments were carried out with or without previous selective depletion of liver macrophages by intravenous administration of liposome-encapsulated dichloromethylene diphosphonate. Relative to saline-injected pair-fed controls, the administration of lipopolysaccharide caused a decrease of serum T3 and T4 and liver 5′-deiodinase mRNA. Selective depletion of liver macrophages did not affect these changes. Starvation for 24 h decreased serum T3 and T4, associated with a slight decrease of liver 5′-deiodinase mRNA. There were no differences between macrophage-depleted and non-depleted animals in this respect. In summary, selective depletion of liver macrophages did not affect the decrease in serum T3, T4 or liver 5′-deiodinase mRNA induced by lipopolysaccharide or 24-h starvation in mice. We conclude that cytokines produced by Kupffer cells are not involved in the pathogenesis of the sick euthyroid syndrome in this experimental model. A Boelen, Department of Endocrinology, F5-171 Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands


2017 ◽  
Vol 85 ◽  
pp. 222-229 ◽  
Author(s):  
Peizhi Li ◽  
Kun He ◽  
Jinzheng Li ◽  
Zuojin Liu ◽  
Jianping Gong

Biomedicines ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 175
Author(s):  
Sara Kishta ◽  
Ashraf Tabll ◽  
Tea Omanovic Kolaric ◽  
Robert Smolic ◽  
Martina Smolic

Although hepatitis C virus (HCV) RNA may be eliminated from blood circulation by direct-acting antivirals (DAA) therapy as assessed by real-time polymerase chain reaction (PCR), HCV RNA can still be present in liver tissue, and this is known as occult HCV. There has been a lot of controversy surrounding the recurrence of hepatocellular carcinoma (HCC) after DAA treatment of hepatic cells infected with chronic HCV. One of the main risk factors that leads to de novo HCC is the chronicity of HCV in hepatic cells. There are many studies regarding the progression of HCV-infected hepatic cells to HCC. However, there is a lack of research on the different molecular mechanisms that lead to the progression of chronic HCV infection to HCC, as well as on the effect of HCV on the alteration of DNA ploidy, which eventually leads to a recurrence of HCC after DAA treatment. In this review article, we will address some risk factors that could lead to the development/recurrence of HCC after treatment of HCV with DAA therapy, such as the role of liver cirrhosis, the alteration of DNA ploidy, the reactivation of hepatitis B virus (HBV), the role of cytokines and the alteration of the immune system, concomitant non- alcoholic fatty liver disease (NAFLD), obesity, alcohol consumption and also occult HCV infection/co-infection. Clinicians should be cautious considering that full eradication of hepatocarcinogenesis cannot be successfully accomplished by anti-HCV treatment alone.


Sign in / Sign up

Export Citation Format

Share Document