Involvement of peroxisome proliferator–activated receptor gamma in vitamin D–mediated protection against acute kidney injury in rats

2013 ◽  
Vol 185 (2) ◽  
pp. 774-783 ◽  
Author(s):  
Akanksha Kapil ◽  
Jaswinder Pal Singh ◽  
Tajpreet Kaur ◽  
Balbir Singh ◽  
Amrit Pal Singh
2022 ◽  
Vol 12 (1) ◽  
pp. 112-120
Author(s):  
Jieqi Gong ◽  
Huanhua Lu

The objective of this study was to investigate the molecular mechanism of the histopathological characteristics of liver cirrhosis (LC) complicated with acute kidney injury (AKI) and the signaling pathway of silent information regulator 1 (SIRT1)-peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) during the pathogenesis of LC. 20 healthy male rats with AKI complicated by laparoscopic cholecystectomy were selected and divided randomly into control group (C group), lipopolysaccharide (LPS) group, bile duct ligation (BDL) group, and model group (lipopolysaccharide+BDL) (D group). The indexes of all the rats were determined, including serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), sarcoplasmic enzyme (Scr), and blood urea nitrogen (BUN); the SIRT1 and PGC-1α expressions in renal tissues of rats from each group was detected. Results showed that the AST and ALT levels in BDL group and D group were higher markedly than those before surgery (P < 0.05). The serum levels of Scr and BUN in D group 4 hours after LPS injection increased hugely compared with before injection (P < 0.05). Compared with BDL group, the protein levels of SIRT1 and PGC-1α in renal tissue of group D were decreased sharply (P < 0.05), and the SIRT1 protein expression was positively correlated with PGC-1α (r = 0.836 and P < 0.01). When LC were complicated with AKI, SIRT1 activity was reduced and PGC-1α expression was inhibited. Moreover, SIRT1-PGC-1α signaling pathway played a protective role in pathogenesis of LC complicated with AKI.


2018 ◽  
Vol 314 (1) ◽  
pp. F1-F8 ◽  
Author(s):  
Matthew R. Lynch ◽  
Mei T. Tran ◽  
Samir M. Parikh

Acute kidney injury (AKI) arising from diverse etiologies is characterized by mitochondrial dysfunction. The peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC1α), a master regulator of mitochondrial biogenesis, has been shown to be protective in AKI. Interestingly, reduction of PGC1α has also been implicated in the development of diabetic kidney disease and renal fibrosis. The beneficial renal effects of PGC1α make it a prime target for therapeutics aimed at ameliorating AKI, forms of chronic kidney disease (CKD), and their intersection. This review summarizes the current literature on the relationship between renal health and PGC1α and proposes areas of future interest.


Author(s):  
Vishal Arvind Chakkarwar ◽  
Pravin Kawtikwar

Objective: The present study investigated the possible effect of fenofibrate and gemfibrozil peroxisome proliferator-activated receptor-alpha agonist in diabetes-induced acute kidney injury (AKI) in rats.Methods: Rats were administered streptozotocin (STZ) (50 mg/kg, i.p., single dose) to induce experimental diabetes mellitus. The development of diabetic AKI was assessed biochemically and histologically. In addition, the diabetes-induced lipid profile and renal oxidative stress were assessed. The single dose of STZ produced diabetes, which induced renal oxidative stress, altered the lipid profile and subsequently produced kidney injuryAKI in 7 weeks by increasing serum creatinine, blood urea nitrogen (BUN), proteinuria, and glomerular damage. Treatment with fenofibrate and gemfibrozil (30 mg/kg p.o, 7 weeks) normalized the altered lipid profile by decreasing serum cholesterol, triglycerides, and increasing serum high-density lipoprotein in diabetic rats. Lisinopril (1 mg/kg, p.o., 7 weeks, reference compound) prevents lipid alteration and development of diabetic AKI.Result: Fenofibrate and gemfibrozil, besides hyperglycemia, significantly prevented the development of diabetic AKI by reducing (serum and tissue) oxidative stress, hyperlipidemia, serum BUN, creatinine, and urinary protein. Further, fenofibrate, but not gemfibrozil, considerably reduced renal structural and functional abnormalities in diabetic rats. The fenofibrate was more effective in attenuating the diabetes-induced AKI and renal oxidative stress as compared to treatment with and gemfibrozil.Conclusion: The fenofibrate and gemfibrozil treatment markedly prevented the diabetes-induced AKI. In comparison, the fenofibrate is found to be a superior approach to attenuate the diabetic AKI than gemfibrozil.


Author(s):  
Vishal Arvind Chakkarwar ◽  
Pravin Kawtikwar

Objective: The present study investigated the possible effect of fenofibrate and gemfibrozil peroxisome proliferator-activated receptor-alpha agonist in diabetes-induced acute kidney injury (AKI) in rats.Methods: Rats were administered streptozotocin (STZ) (50 mg/kg, i.p., single dose) to induce experimental diabetes mellitus. The development of diabetic AKI was assessed biochemically and histologically. In addition, the diabetes-induced lipid profile and renal oxidative stress were assessed. The single dose of STZ produced diabetes, which induced renal oxidative stress, altered the lipid profile and subsequently produced kidney injuryAKI in 7 weeks by increasing serum creatinine, blood urea nitrogen (BUN), proteinuria, and glomerular damage. Treatment with fenofibrate and gemfibrozil (30 mg/kg p.o, 7 weeks) normalized the altered lipid profile by decreasing serum cholesterol, triglycerides, and increasing serum high-density lipoprotein in diabetic rats. Lisinopril (1 mg/kg, p.o., 7 weeks, reference compound) prevents lipid alteration and development of diabetic AKI.Result: Fenofibrate and gemfibrozil, besides hyperglycemia, significantly prevented the development of diabetic AKI by reducing (serum and tissue) oxidative stress, hyperlipidemia, serum BUN, creatinine, and urinary protein. Further, fenofibrate, but not gemfibrozil, considerably reduced renal structural and functional abnormalities in diabetic rats. The fenofibrate was more effective in attenuating the diabetes-induced AKI and renal oxidative stress as compared to treatment with and gemfibrozil.Conclusion: The fenofibrate and gemfibrozil treatment markedly prevented the diabetes-induced AKI. In comparison, the fenofibrate is found to be a superior approach to attenuate the diabetic AKI than gemfibrozil.


2013 ◽  
Vol 12 (4) ◽  
pp. 262-272 ◽  
Author(s):  
Andrea Braun ◽  
Kenneth Christopher

Sign in / Sign up

Export Citation Format

Share Document