Comparative study of full-scale and model-scale wind pressure measurements on a gable roof low-rise building

2021 ◽  
Vol 208 ◽  
pp. 104448
Author(s):  
J.C. Li ◽  
S.Y. Hu ◽  
Q.S. Li
1987 ◽  
Vol 2 (4) ◽  
pp. 195-203 ◽  
Author(s):  
Tetsuo Ikoma

This paper describes the results of static loading tests simulating snow load, of wind pressure measurements and of melting snow tests, respectively, concerning full scale air-supported domes. Static loading tests are conducted for a full scale single-skin air-supported dome, whereas wind pressure measurements are performed using two kinds of model. One is the full scale dome mentioned above, the other is the wind tunnel model. Furthermore, melting snow tests are performed using another full scale double-skin dome in order to investigate how much snow can be melted artificially. Through these series of tests, structural characteristics of this kind of structure against snow load and wind load are confirmed. The results of loading tests and melting snow tests are compared with analytical results; good agreement is obtained.


2002 ◽  
Vol 90 (12-15) ◽  
pp. 1817-1829 ◽  
Author(s):  
Morimasa Watakabe ◽  
Masamiki Ohashi ◽  
Hisashi Okada ◽  
Yasuo Okuda ◽  
Hitomi Kikitsu ◽  
...  

2015 ◽  
Vol 14 (5-6) ◽  
pp. 729-766 ◽  
Author(s):  
Franck Bertagnolio ◽  
Helge Aa. Madsen ◽  
Christian Bak ◽  
Niels Troldborg ◽  
Andreas Fischer

1989 ◽  
Vol 111 (4) ◽  
pp. 748-754
Author(s):  
V. Salemann ◽  
J. M. Williams

A new method for modeling hot underexpanded exhaust plumes with cold model scale plumes in aerodynamic wind tunnel testing has been developed. The method is applicable to aeropropulsion testing where significant interaction between the exhaust and the free stream and aftbody may be present. The technique scales the model and nozzle external geometry, including the nozzle exit area, matches the model jet to free-stream dynamic pressure ratio to full-scale jet to free-stream dynamic pressure ratio, and matches the model thrust coefficient to full-scale thrust coefficient. The technique does not require scaling of the internal nozzle geometry. A generalized method of characteristic computer code was used to predict the plume shapes of a hot (γ = 1.2) half-scale nozzle of area ratio 3.2 and of a cold (γ = 1.4) model scale nozzle of area ratio 1.3, whose pressure ratio and area ratio were selected to satisfy the above criteria and other testing requirements. The plume shapes showed good agreement. Code validity was checked by comparing code results for cold air exhausting into a quiescent atmosphere to pilot surveys and shadowgraphs of model nozzle plumes taken in a static facility.


Author(s):  
Paul Schünemann ◽  
Timo Zwisele ◽  
Frank Adam ◽  
Uwe Ritschel

Floating wind turbine systems will play an important role for a sustainable energy supply in the future. The dynamic behavior of such systems is governed by strong couplings of aerodynamic, structural mechanic and hydrodynamic effects. To examine these effects scaled tank tests are an inevitable part of the design process of floating wind turbine systems. Normally Froude scaling is used in tank tests. However, using Froude scaling also for the wind turbine rotor will lead to wrong aerodynamic loads compared to the full-scale turbine. Therefore the paper provides a detailed description of designing a modified scaled rotor blade mitigating this problem. Thereby a focus is set on preserving the tip speed ratio of the full scale turbine, keeping the thrust force behavior of the full scale rotor also in model scale and additionally maintaining the power coefficient between full scale and model scale. This is achieved by completely redesigning the original blade using a different airfoil. All steps of this redesign process are explained using the example of the generic DOWEC 6MW wind turbine. Calculations of aerodynamic coefficients are done with the software tools XFoil and AirfoilPrep and the resulting thrust and power coefficients are obtained by running several simulations with the software AeroDyn.


Sign in / Sign up

Export Citation Format

Share Document