Ground penetrating radar facies of inferred tsunami deposits on the shores of the Arabian Sea (Northern Indian Ocean)

2014 ◽  
Vol 351 ◽  
pp. 13-24 ◽  
Author(s):  
Benjamin Koster ◽  
Gösta Hoffmann ◽  
Christoph Grützner ◽  
Klaus Reicherter
2007 ◽  
Vol 20 (13) ◽  
pp. 2978-2993 ◽  
Author(s):  
Tommy G. Jensen

Abstract Composites of Florida State University winds (1970–99) for four different climate scenarios are used to force an Indian Ocean model. In addition to the mean climatology, the cases include La Niña, El Niño, and the Indian Ocean dipole (IOD). The differences in upper-ocean water mass exchanges between the Arabian Sea and the Bay of Bengal are investigated and show that, during El Niño and IOD years, the average clockwise Indian Ocean circulation is intensified, while it is weakened during La Niña years. As a consequence, high-salinity water export from the Arabian Sea into the Bay of Bengal is enhanced during El Niño and IOD years, while transport of low-salinity waters from the Bay of Bengal into the Arabian Sea is enhanced during La Niña years. This provides a venue for interannual salinity variations in the northern Indian Ocean.


2020 ◽  
Vol 17 (23) ◽  
pp. 6051-6080
Author(s):  
Tim Rixen ◽  
Greg Cowie ◽  
Birgit Gaye ◽  
Joaquim Goes ◽  
Helga do Rosário Gomes ◽  
...  

Abstract. Decreasing concentrations of dissolved oxygen in the ocean are considered one of the main threats to marine ecosystems as they jeopardize the growth of higher organisms. They also alter the marine nitrogen cycle, which is strongly bound to the carbon cycle and climate. While higher organisms in general start to suffer from oxygen concentrations < ∼ 63 µM (hypoxia), the marine nitrogen cycle responds to oxygen concentration below a threshold of about 20 µM (microbial hypoxia), whereas anoxic processes dominate the nitrogen cycle at oxygen concentrations of < ∼ 0.05 µM (functional anoxia). The Arabian Sea and the Bay of Bengal are home to approximately 21 % of the total volume of ocean waters revealing microbial hypoxia. While in the Arabian Sea this oxygen minimum zone (OMZ) is also functionally anoxic, the Bay of Bengal OMZ seems to be on the verge of becoming so. Even though there are a few isolated reports on the occurrence of anoxia prior to 1960, anoxic events have so far not been reported from the open northern Indian Ocean (i.e., other than on shelves) during the last 60 years. Maintenance of functional anoxia in the Arabian Sea OMZ with oxygen concentrations ranging between > 0 and ∼ 0.05 µM is highly extraordinary considering that the monsoon reverses the surface ocean circulation twice a year and turns vast areas of the Arabian Sea from an oligotrophic oceanic desert into one of the most productive regions of the oceans within a few weeks. Thus, the comparably low variability of oxygen concentration in the OMZ implies stable balances between the physical oxygen supply and the biological oxygen consumption, which includes negative feedback mechanisms such as reducing oxygen consumption at decreasing oxygen concentrations (e.g., reduced respiration). Lower biological oxygen consumption is also assumed to be responsible for a less intense OMZ in the Bay of Bengal. According to numerical model results, a decreasing physical oxygen supply via the inflow of water masses from the south intensified the Arabian Sea OMZ during the last 6000 years, whereas a reduced oxygen supply via the inflow of Persian Gulf Water from the north intensifies the OMZ today in response to global warming. The first is supported by data derived from the sedimentary records, and the latter concurs with observations of decreasing oxygen concentrations and a spreading of functional anoxia during the last decades in the Arabian Sea. In the Arabian Sea decreasing oxygen concentrations seem to have initiated a regime shift within the pelagic ecosystem structure, and this trend is also seen in benthic ecosystems. Consequences for biogeochemical cycles are as yet unknown, which, in addition to the poor representation of mesoscale features in global Earth system models, reduces the reliability of estimates of the future OMZ development in the northern Indian Ocean.


2016 ◽  
Vol 46 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Larissa Natsumi Tamura ◽  
Renato Paes de Almeida ◽  
Fabio Taioli ◽  
André Marconato ◽  
Liliane Janikian

ABSTRACT: One key factor for the advance in the study of fluvial deposits is the application of geophysical methods, being the Ground Penetrating Radar one of special value. Although applied to active rivers, the method is not extensively tested on the rock record, bearing interest for hydrocarbon reservoir analogue models. The São Sebastião and Marizal formations were the subject of previous studies, which made possible the comparison of Ground Penetrating Radar survey to previous stratigraphic studies in order to identify the best combination of resolution, penetration and antenna frequency for the studied subject. Eight radar facies were identified, being six of them related to fluvial sedimentary environments, one related to eolian sedimentary environment and one radar facies interpreted as coastal sedimentary environment. The Ground Penetrating Radar data showed compatibility to sedimentary structures in the outcrops, like planar and trough cross-stratified beds. It is noted that the obtained resolution was efficient in the identification of structures up to 0.3 m using a 100 MHz antenna. In this way, the Ground Penetrating Radar survey in outcrops bears great potential for further works on fluvial depositional architecture.


Radiocarbon ◽  
2001 ◽  
Vol 43 (2A) ◽  
pp. 483-488 ◽  
Author(s):  
Koushik Dutta ◽  
Ravi Bhushan ◽  
B L K Somayajulu

Apparent marine radiocarbon ages are reported for the northern Indian Ocean region for the pre-nuclear period, based on measurements made in seven mollusk shells collected between 1930 and 1954. The conventional 14C ages of these shells range from 693 ± 44 to 434 ± 51 BP in the Arabian Sea and 511 ± 34 to 408 ± 51 BP in the Bay of Bengal. These ages correspond to mean ΔR correction values of 163 ± 30 yr for the northern Arabian Sea, 11 ± 35 yr for the eastern Bay of Bengal (Andaman Sea) and 32 ± 20 yr for the southern Bay of Bengal. Contrasting reservoir ages for these two basins are most likely due to differences in their thermocline ventilation rates.


Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1142-1153 ◽  
Author(s):  
Paulette Tercier ◽  
Rosemary Knight ◽  
Harry Jol

We have used geostatistical analysis of radar reflections to quantify the correlation structures found in 2-D ground‐penetrating radar (GPR) images. We find that the experimental semivariogram, the product of the geostatistical analysis of the GPR data, is well‐defined and can be modeled using standard geostatistical models to obtain an estimate of the range or correlation length, and the maximum correlation direction, in the 2-D GPR image. When we compare the results from geostatistical analysis of GPR data from selected deltaic and barrier‐spit depositional environments we find different correlation structures in GPR images from different depositional environments. GPR images from braid deltas have near‐horizontal correlation directions and correlation lengths on the order of a few meters. In contrast, the GPR image of a fan‐foreset delta has a very long (>24 m) correlation length and a maximum correlation direction plunging 20°. In the GPR images from barrier spits, we find maximum correlation directions that are horizontal or plunging a few degrees. The correlation lengths range from 7 to 43 m, depending on the orientation of the GPR image relative to spit end growth, and on the specific radar facies that is analyzed.


2015 ◽  
Vol 323 ◽  
pp. 1-14 ◽  
Author(s):  
Xin Shan ◽  
Xinghe Yu ◽  
Peter D. Clift ◽  
Chengpeng Tan ◽  
Lina Jin ◽  
...  

2015 ◽  
Vol 8 ◽  
Author(s):  
Anil Mohapatra ◽  
Dipanjan Ray ◽  
David G. Smith

Gymnothorax prolatusis recorded for the first time from the Indian Ocean on the basis of four specimens collected in the Bay of Bengal off India and one from the Arabian Sea off Pakistan. These records extend the range of the species from Taiwan to the north-western Indian Ocean.


2007 ◽  
Vol 86 (1) ◽  
pp. 55-61 ◽  
Author(s):  
M.A.J. Bakker ◽  
D. Maljers ◽  
H.J.T. Weerts

AbstractManagement of the Dutch embanked floodplains is of crucial interest in the light of a likely increase of extreme floods. One of the issues is a gradual decrease of floodwater accommodation space as a result of overbank deposition of mud and sand during floods. To address this issue, sediment deposits of an undisturbed embanked floodplain near Winssen along the river Waal were studied using ground-penetrating radar (GPR). A number of radar facies units were recognized. Boreholes were used to relate radar facies units to sedimentary facies and to determine radar velocity. The GPR groundwave is affected by differences in moisture and texture of the top layer and probably interferes with the first subsurface reflector. The architectural elements recognized in the GPR transects confirm earlier reported insights on human-influenced river behaviour. This is testified in the development of sand bars during flood regimes that are probably more widespread than previously established.


2019 ◽  
Author(s):  
Jovitha Lincy ◽  
Cathrine Manohar

Abstract. The Northern Indian Ocean host two recognized Oxygen Minimum Zones (OMZ): one in the Arabian Sea and the other in the Bay of Bengal region. The next-generation sequencing technique was used to understand the total bacterial diversity from the surface sediment of off Goa within the OMZ of Arabian Sea, and from off Paradip within the OMZ of Bay of Bengal. The dominant phyla identified include Firmicutes (33.06 %) and Proteobacteria (32.44 %) from the Arabian Sea, and Proteobacteria (52.51 %) and Planctomycetes (8.63 %) from the Bay of Bengal. Statistical analysis indicates that bacterial diversity from sediments of the Bay of Bengal OMZ is ~ 48 % higher than the Arabian Sea OMZ. Diverse candidate bacterial clades were also detected, whose function is unknown, but many of these were reported from other OMZs as well, suggesting their putative role in sediment biogeochemistry. Bacterial diversity from the present study reveals that the off Paradip site of Bay of Bengal OMZ is highly diverse and unexplored in comparison to the off Goa site of the Arabian Sea OMZ. Functional diversity analysis indicates that the relative percentage distribution of genes involved in methane, nitrogen, sulfur and many unclassified energy metabolisms is almost the same in both sites, reflecting a similar ecological role, irrespective of the differences in phylotypic diversity.


Sign in / Sign up

Export Citation Format

Share Document