Effects of deformation temperature on the evolution of second-phase and mechanical properties of large 2219 Al-Cu alloy rings

2020 ◽  
Vol 160 ◽  
pp. 110094 ◽  
Author(s):  
Wanfu Guo ◽  
Youping Yi ◽  
Shiquan Huang ◽  
Xianchang Mao ◽  
Jie Fang ◽  
...  
Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 632
Author(s):  
Cheng Li ◽  
Shusen Wu ◽  
Shulin Lü ◽  
Jianyu Li ◽  
Longfei Liu ◽  
...  

The Zr element is one of the important grain refiners for 7xxx series Al-Zn-Mg-Cu alloys, but the effect of Zr content more than 0.15 wt.% needs to be deeply investigated under the action of ultrasonic vibration. In this study, the effects of Zr contents (0.1 to 0.25 wt.%) on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy were studied. The results showed that Zr element could refine grains, but when the Zr content was greater than 0.15 wt.%, the grain size was not uniform, the number of second phase particles increased, and the segregation of components became more serious. It was found that after ultrasonic treatment, the grain-size inhomogeneity was greatly improved, and the Zr content could be added up to 0.2 wt.%. When the Zr content is equal or lower than 0.2 wt.%, ultrasonic treatment can effectively improve the mechanical properties of materials by refining grains and weakening segregation. However, when the Zr content is up to 0.25 wt.%, the effect is getting worse.


Author(s):  
H.-J. Kleebe ◽  
J.S. Vetrano ◽  
J. Bruley ◽  
M. Rühle

It is expected that silicon nitride based ceramics will be used as high-temperature structural components. Though much progress has been made in both processing techniques and microstructural control, the mechanical properties required have not yet been achieved. It is thought that the high-temperature mechanical properties of Si3N4 are limited largely by the secondary glassy phases present at triple points. These are due to various oxide additives used to promote liquid-phase sintering. Therefore, many attempts have been performed to crystallize these second phase glassy pockets in order to improve high temperature properties. In addition to the glassy or crystallized second phases at triple points a thin amorphous film exists at two-grain junctions. This thin film is found even in silicon nitride formed by hot isostatic pressing (HIPing) without additives. It has been proposed by Clarke that an amorphous film can exist at two-grain junctions with an equilibrium thickness.


Author(s):  
E. Sukedai ◽  
H. Mabuchi ◽  
H. Hashimoto ◽  
Y. Nakayama

In order to improve the mechanical properties of an intermetal1ic compound TiAl, a composite material of TiAl involving a second phase Ti2AIN was prepared by a new combustion reaction method. It is found that Ti2AIN (hexagonal structure) is a rod shape as shown in Fig.1 and its side surface is almost parallel to the basal plane, and this composite material has distinguished strength at elevated temperature and considerable toughness at room temperature comparing with TiAl single phase material. Since the property of the interface of composite materials has strong influences to their mechanical properties, the structure of the interface of intermetallic compound and nitride on the areas corresponding to 2, 3 and 4 as shown in Fig.1 was investigated using high resolution electron microscopy and image processing.


2018 ◽  
Vol 1 (1) ◽  
pp. 77-90
Author(s):  
Walaa Abdelaziem ◽  
Atef Hamada ◽  
Mohsen A. Hassan

Severe plastic deformation is an effective method for improving the mechanical properties of metallic alloys through promoting the grain structure. In the present work, simple cyclic extrusion compression technique (SCEC) has been developed for producing a fine structure of cast Al-1 wt. % Cu alloy and consequently enhancing the mechanical properties of the studied alloy. It was found that the grain structure was significantly reduced from 1500 µm to 100 µm after two passes of cyclic extrusion. The ultimate tensile strength and elongation to failure of the as-cast alloy were 110 MPa and 12 %, respectively. However, the corresponding mechanical properties of the two pass CEC deformed alloy are 275 MPa and 35%, respectively. These findings ensure that a significant improvement in the grain structure has been achieved. Also, cyclic extrusion deformation increased the surface hardness of the alloy by 49 % after two passes. FE-simulation model was adopted to simulate the deformation behavior of the material during the cyclic extrusion process using DEFORMTM-3D Ver11.0. The FE-results revealed that SCEC technique was able to impose severe plastic strains with the number of passes. The model was able to predict the damage, punch load, back pressure, and deformation behavior.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 79
Author(s):  
Ruopeng Lu ◽  
Kai Jiao ◽  
Yuhong Zhao ◽  
Kun Li ◽  
Keyu Yao ◽  
...  

Mg alloys with fine mechanical properties and high damping capacities are essential in engineering applications. In this work, Mg–Zn–Y based alloys with lamellar long period stacking ordered (LPSO) phases were obtained by different processes. The results show that a more lamellar second phase can be obtained in the samples with more solid solution atoms. The density of the lamellar LPSO phase has an obvious effect on the damping of the magnesium alloy. The compact LPSO phase is not conducive to dislocation damping, but sparse lamellar phases can improve the damping capacity without significantly reducing the mechanical properties. The Mg95.3Zn2Y2.7 alloy with lamellar LPSO phases and ~100 μm grain size exhibited a fine damping property of 0.110 at ε = 10–3.


2021 ◽  
Vol 1121 (1) ◽  
pp. 012009
Author(s):  
S Lee ◽  
R Muchime ◽  
R Matsumoto ◽  
H Utsunomiya

Sign in / Sign up

Export Citation Format

Share Document