Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys

2015 ◽  
Vol 83 ◽  
pp. 651-660 ◽  
Author(s):  
Y.D. Wu ◽  
Y.H. Cai ◽  
X.H. Chen ◽  
T. Wang ◽  
J.J. Si ◽  
...  
Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 282 ◽  
Author(s):  
Li Xiang ◽  
Wenmin Guo ◽  
Bin Liu ◽  
Ao Fu ◽  
Jianbo Li ◽  
...  

A series of TaNbVTiAlx (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) refractory high-entropy alloys (RHEAs) with high specific strength and reasonable plasticity were prepared using powder metallurgy (P/M) technology. This paper studied their microstructure and compression properties. The results show that all the TaNbVTiAlx RHEAs exhibited a single BCC solid solution microstructure with no elemental segregation. The P/M TaNbVTiAlx RHEAs showed excellent room-temperature specific strength (207.11 MPa*cm3/g) and high-temperature specific strength (88.37 MPa*cm3/g at 900 °C and 16.03 MPa*cm3/g at 1200 °C), with reasonable plasticity, suggesting that these RHEAs have potential to be applied at temperatures >1200 °C. The reasons for the excellent mechanical properties of P/M TaNbVTiAl0.2 RHEA were the uniform microstructure and solid solution strengthening effect.


2021 ◽  
pp. 110877
Author(s):  
Ankit Roy ◽  
Praveen Sreeramagiri ◽  
Tomas Babuska ◽  
Brandon Krick ◽  
Pratik K. Ray ◽  
...  

2019 ◽  
Vol 151 ◽  
pp. 310-317 ◽  
Author(s):  
Carlyn R. LaRosa ◽  
Mulaine Shih ◽  
Céline Varvenne ◽  
Maryam Ghazisaeidi

2019 ◽  
Vol 167 ◽  
pp. 1-11 ◽  
Author(s):  
Francisco Gil Coury ◽  
Paul Wilson ◽  
Kester D. Clarke ◽  
Michael J. Kaufman ◽  
Amy J. Clarke

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 721
Author(s):  
Yupeng Zhang ◽  
Qingkai Shen ◽  
Xizhang Chen ◽  
Subramanian Jayalakshmi ◽  
Ramachandra Arvind Singh ◽  
...  

In high entropy alloys (HEAs), the addition of large-size atoms results in lattice distortion and further leads to solid solution strengthening or precipitation strengthening. However, the relationship between atomic radius, solid solution strengthening and precipitation strengthening has not been discerned yet. In this work, CoCrFeNiX0.4 (X = Al, Nb, Ta, with an equi-atomic radius) HEAs were prepared by powder plasma arc additive manufacturing (PPA-AM) and evaluated for their mechanical properties. Compression and nano-indentation hardness tests showed that the HEA with Ta showed the best properties. The influence of atomic radius and solid solubility on solid solution strengthening was investigated and the main strengthening mechanism that determines the mechanical properties of the developed HEAs was analyzed. The results showed that (i) the CoCrFeNiAl0.4 alloy did not show any solid solution strengthening effect and that a clear relation between solid solution strengthening and atomic size was not observed; (ii) in both CoCrFeNiTa0.4 and CoCrFeNiNb0.4 HEAs, precipitation strengthening and grain boundary strengthening effects are observed, wherein the difference in mechanical properties between both the alloys can be mainly attributed to the formation of fine eutectic structure in CoCrFeNiTa0.4; and (iii) from the microstructural analyses, it was identified that, in the CoCrFeNiTa0.4 HEA, the location containing a fine eutectic structure is accompanied by the formation of low-angle grain boundaries (LAGBs), which is also the region where deformed grains gather, giving rise to improved mechanical strengthening.


Sign in / Sign up

Export Citation Format

Share Document