A fractographic study exploring the fracture surface topography of S355J2 steel after pseudo-random bending-torsion fatigue tests

Measurement ◽  
2021 ◽  
Vol 178 ◽  
pp. 109443
Author(s):  
W. Macek ◽  
Z. Marciniak ◽  
R. Branco ◽  
D. Rozumek ◽  
G.M. Królczyk
1990 ◽  
Vol 34 ◽  
pp. 719-727 ◽  
Author(s):  
Sumio Tanaka ◽  
Yukio Hirose ◽  
Keisuke Tanaka

The residual stress left on the fracture surface is one of the important parameters in X-ray fractographic study. It has been used to analyze fracture mechanisms in fracture toughness and fatigue tests especially of high strength steels.In this paper, X-ray fractography was applied to brittle fracture of alumina (Al2O3) and zirconia (ZΓO2) ceramics.


Author(s):  
M.Y.D. LANZEROTTI ◽  
J.J. PINTO ◽  
A. WOLFE

1985 ◽  
Vol 51 (465) ◽  
pp. 1477-1482 ◽  
Author(s):  
Keiji OGURA ◽  
Yoshio MIYOSHI ◽  
Masahiro KAWAGUCHI ◽  
Masahiro KAYAMA

1993 ◽  
Vol 37 ◽  
pp. 327-334
Author(s):  
Akira Suzuki ◽  
Yoichi Kishi ◽  
Zenjiro Yajima ◽  
Yukio Hirose

Austempered ductile cast iron (ADI) has composite microstructures, which are martensite/retained austenite structures. ADI has very large toughness compared to other ductile cast irons. After fracture, the retained austenite near the fracture surface will be transformed to martensite. In the present study, X-ray fractography is applied to fatigue fracture surface of ADI. The fatigue tests were carried out on compact tension (CT) specimens. The volume fraction of retained austenite was quantitatively measured on and beneath fatigue fracture surfaces. The plastic strain on the fracture surface was estimated from measuring the line broadening of X-ray diffraction profiles. The depth of the plastic zone left on fracture surface was evaluated from the distributions of the volume fraction of retained austenite. The results are discussed on the basis of fracture mechanics.


2020 ◽  
Vol 10 (7) ◽  
pp. 1032-1039
Author(s):  
Renhui Tian ◽  
Jiangfeng Dong ◽  
Yongjie Liu ◽  
Qingyuan Wang ◽  
Yunrong Luo

To investigate the influence of shot peening (SP) on very high cycle fatigue (VHCF) performance of 2024-T351, the specimens with three surface conditions were performed under ultrasonic fatigue tests: mechanicallypolished without peening (NP), ceramic shot peening (SP1), steel and glass mixed shot peening (SP2). The roughness, microhardness, residual stress, fractography measurement and scanning electron microscopy (SEM) were applied before fatigue test to characterize the effective layer induced by the peening treatment. For the failed specimens, the fracture surface were analysed using SEM to study the mechanisms of fatigue crack propagation. In addition, the fatigue life curve in ultra-high cycle region continuously decreased in the three series of specimens. However, the experimental results revealed that fatigue strength improvement resulting from shot peening treatment was negligible in very high cycle regime. Furthermore, the stress intensity factor for the surface crack initiation (SCI) and interior crack initiation (ICI) was discussed based on quantitative analysis on the fracture surface. The average values of ΔKfish-eye for NP, SP1 and SP2 specimens are about 2.22, 1.48 and 1.61 MPa · m1/2, respectively.


Sign in / Sign up

Export Citation Format

Share Document