A thermodynamic analysis of Argon's yield stress model: Extended influence of strain rate and temperature

2019 ◽  
Vol 130 ◽  
pp. 20-28 ◽  
Author(s):  
C.A. Bernard ◽  
J.P.M. Correia ◽  
S. Ahzi
2018 ◽  
Vol 37 (9-10) ◽  
pp. 849-856 ◽  
Author(s):  
Yan-Xing Liu ◽  
Y.C Lin

AbstractUp to now, there are few reports on the yield behavior of Ni-based superalloy during plastic deformation. However, an accurate yield stress model is significant for simulating the plastic forming process by cellular automaton or finite element methods. Therefore, the yield behavior of a solution-treated Ni-based superalloy is studied by hot compression tests. In order to evaluate yield stresses from the measured flow stress curves, the yield process is analyzed in terms of dislocation theory. Then, yield stresses at different deformation temperatures and strain rates are clearly determined. The experimental results show that the yield stresses are highly sensitive to deformation temperature and strain rate. The determined yield stress almost linearly increases with the increase of the logarithm of strain rate or the reciprocal of deformation temperature. A yield stress model is developed to correlate the yield behavior of the studied solution-treated Ni-based superalloy with deformation temperature, strain rate, and strengthening effect of alloying elements. The developed model can well describe the yield behavior of the studied solution-treated Ni-based superalloy.


Author(s):  
Xiaobing Li ◽  
Jianpeng Chen ◽  
Xiuqing Hu ◽  
Hongtao Fu ◽  
Jun Wang ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1865
Author(s):  
Leonardo Schippa

When dealing with natural geo–hazards, it is important to understand the influence of sediment sorting on debris flows. The presence of coarse fraction is one of the aspects which affects the rheological behaviour of natural viscous granular fluid mixtures. In this paper, experiments on reconstituted debris flow mixtures with different coarse–to–fine sediment ratios are considered. Such mixtures behave just as non–Newtonian yield stress fluids and their rheological behaviour is largely affected by the presence of coarse fraction. Experimental results demonstrate that yield stress is very sensitive not only to bulk sediment concentration but also to coarse sediment fraction. A novel yield stress model is presented. It accounts for an empirical grading function depending on the coarse–to–fine grain content. The yield stress model performed satisfactorily in comparison with the experiments, showing that it is almost independent of the coarse–to–fine grain fraction in case of dominant coarse sediment content.


2019 ◽  
Vol 287 ◽  
pp. 3-7
Author(s):  
Yong Zhang ◽  
Qing Zhang ◽  
Yuan Tao Sun ◽  
Xian Rong Qin

The constitutive modeling of aluminum alloy under warm forming conditions generally considers the influence of temperature and strain rate. It has been shown by published flow stress curves of Al-Mg alloy that there is nearly no effect of strain rate on initial yield stress at various temperatures. However, most constitutive models ignored this phenomenon and may lead to inaccurate description. In order to capture the rate-independent initial yield stress, Peric model is modified via introducing plastic strain to multiply the strain rate, for eliminating the effect of strain rate when the plastic strain is zero. Other constitutive models including the Wagoner, modified Hockett–Sherby and Peric are also considered and compared. The results show that the modified Peric model could not only describe the temperature-and rate-dependent flow stress, but also capture the rate-independent initial yield stress, while the Wagoner, modified Hockett–Sherby and Peric model can only describe the temperature-and rate-dependent flow stress. Moreover, the modified Peric model could obtain proper static yield stress more naturally, and this property may have potential applications in rate-dependent simulations.


2018 ◽  
Author(s):  
S. M. Davis ◽  
D. K. Zerkle ◽  
L. B. Smilowitz ◽  
B. F. Henson
Keyword(s):  

2021 ◽  
Vol 63 (12) ◽  
pp. 2070
Author(s):  
В.В. Малашенко

The high-strain rate deformation of crystals with giant magnetostriction is theoretically analyzed. It is shown that giant magnetostriction has a significant effect on the dynamic yield stress of crystals.


2020 ◽  
Vol 46 (7) ◽  
pp. 9943-9946
Author(s):  
Chaojuan Li ◽  
Ruzhuan Wang ◽  
Xiaorong Wang ◽  
Dingyu Li ◽  
Weiguo Li

Sign in / Sign up

Export Citation Format

Share Document