Properties of CMV cation exchange membranes in sulfuric acid media

2006 ◽  
Vol 284 (1-2) ◽  
pp. 67-78 ◽  
Author(s):  
Le Xuan Tuan ◽  
M. Verbanck ◽  
C. Buess-Herman ◽  
H.D. Hurwitz
2011 ◽  
Vol 396-398 ◽  
pp. 75-87
Author(s):  
Zai Fu Yang ◽  
Xiao Jing Yang ◽  
Li Hong Sun ◽  
Lian Lian Xu

ABSTRACT: Cation adsorbent was prepared from the Solidago Canadensis(which are abandoned agricultural land of alien invasive plants)by Sulfuric acid esterification modified , isoamyl alcohol as reaction medium. Design L934 orthogonal experiment, the Solidago canadensis cation exchange adsorbent, the optimal preparation conditions. Experimental results show that at 15°C, concentrated sulfuric acid and amyl alcohol volume ratio of 5:6 obtained under conditions of Solidago canadensis cation exchange adsorbent for Pb(II) exchange best. The experimental results of Pb(II) adsorption onto the Solidago Canadensis based cation adsorbent showed that the best conditions are: the initial pH 5, the concentration of Pb(II) 300mg/L,the dosage of cation adsorbent 1.2mg/L and adsorption time 3h. The adsorption data were analyzed by using pseudo-first-order and pseudo-second-order kinetic models were found to follow the pseudo-second-order kinetic model.


2017 ◽  
Vol 171 ◽  
pp. 165-171
Author(s):  
Hiroshi Nakazawa ◽  
Shin Koshiya ◽  
Hideki Kobayashi ◽  
Takashi Matsuhashi

2005 ◽  
Vol 83 (9) ◽  
pp. 1391-1399 ◽  
Author(s):  
Robin A Cox

The mechanisms given in textbooks for both ester and amide hydrolysis in acid media are in need of revision. To illustrate this, benzimidates were chosen as model compounds for oxygen protonated benzamides. In aqueous sulfuric acid media they hydrolyze either by a mechanism involving attack of two water molecules at the carbonyl carbon to give a neutral tetrahedral intermediate directly, as in ester hydrolysis, or by an SN2 attack of two water molecules at the alkyl group of the alkoxy oxygen to form the corresponding amide, or by both mechanisms, depending on the structure of the benzimidate. The major line of evidence leading to these conclusions is the behavior of the excess acidity plots resulting from the rate constants obtained for the hydrolyses as functions of acid concentration and temperature. The first of these mechanisms is in fact very similar to one found for the hydrolysis of benzamides, as inferred from: (1) similar excess acidity plot behaviour; and (2) the observed solvent isotope effects for amide hydrolysis, which are fully consistent with the involvement of two water molecules, but not with one or with three (or more). This mechanism starts out as essentially the same one as that found for ester hydrolysis under the same conditions. Differences arise because the neutral tetrahedral intermediate, formed directly as a result of the protonated substrate being attacked by two water molecules (not one), possesses an easily protonated nitrogen in the amide and benzimidate cases, explaining both the lack of 18O exchange observed for amide hydrolysis and the irreversibility of the reaction. Protonated tetrahedral intermediates are too unstable to exist in the reaction media; in fact, protonation of an sp3 hybridized oxygen to put a full positive charge on it is extremely difficult. (This means that individual protonated alcohol or ether species are unlikely to exist in these media either.) Thus, the reaction of the intermediate going to product or exchanged reactant is a general-acid-catalyzed process for esters. For amide hydrolysis, the situation is complicated by the fact that another, different, mechanism takes over in more strongly acidic media, according to the excess acidity plots. Some possibilities for this are given.Key words: esters, amides, benzimidates, hydrolysis, excess acidity, mechanism, acid media.


2011 ◽  
Vol 22 (2) ◽  
pp. 53-57 ◽  
Author(s):  
Yuki ASARI ◽  
Nobuyoshi SHOJI ◽  
Kazuyoshi MIYOSHI ◽  
Daisuke UMENO ◽  
Kyoichi SAITO

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 343 ◽  
Author(s):  
Dong Wang ◽  
Wenqiao Meng ◽  
Yunna Lei ◽  
Chunxu Li ◽  
Jiaji Cheng ◽  
...  

To improve sulfuric acid recovery from sodium sulfate wastewater, a lab-scale bipolar membrane electrodialysis (BMED) process was used for the treatment of simulated sodium sulfate wastewater. In order to increase the concentration of sulfuric acid (H2SO4) generated during the process, a certain concentration of ammonium sulfate solution was added into the feed compartment. To study the influencing factors of sulfuric acid yield, we prepared different concentrations of ammonium sulfate solution, different feed solution volumes, and different membrane configurations in this experiment. As it can be seen from the results, when adding 8% (NH4)2SO4 into 15% Na2SO4 under the experimental conditions where the current density was 50 mA/cm2, the concentration of H2SO4 increased from 0.89 to 1.215 mol/L, and the current efficiency and energy consumption could be up to 60.12% and 2.59 kWh/kg, respectively. Furthermore, with the increase of the volume of the feed compartment, the concentration of H2SO4 also increased. At the same time, the configuration also affects the final concentration of the sulfuric acid; in the BP-A-C-BP (“BP” means bipolar membrane, “A” means anion exchange membrane, and “C” means cation exchange membrane; “BP-A-C-BP” means that two bipolar membranes, an anion exchange membrane, and a cation exchange membrane are alternately arranged to form a repeating unit of the membrane stack) configuration, a higher H2SO4 concentration was generated and less energy was consumed. The results show that the addition of the double conjugate salt is an effective method to increase the concentration of acid produced in the BMED process.


Sign in / Sign up

Export Citation Format

Share Document