scholarly journals Colanic acid biosynthesis in Escherichia coli is dependent on lipopolysaccharide structure and glucose availability

2020 ◽  
Vol 239 ◽  
pp. 126527
Author(s):  
Chenhui Wang ◽  
Hailing Zhang ◽  
Jianli Wang ◽  
Shanshan Chen ◽  
Zhen Wang ◽  
...  
1969 ◽  
Vol 115 (5) ◽  
pp. 935-945 ◽  
Author(s):  
I. W. Sutherland

The exopolysaccharide slime colanic acid has been isolated from representative strains of Escherichia coli, Salmonella typhimurium and Aerobacter cloacae. Analysis showed that each polymer contained glucose, galactose, fucose and glucuronic acid, together with acetate and pyruvate. The molar proportions of these components were 1:1·8:1·9:1:1:1 approximately. On the basis of periodate oxidation of the natural and deacetylated polysaccharide, glucose is proposed as the site of the acetyl groups. The pyruvate is attached to galactose. Three neutral oligosaccharides and ten electrophoretically mobile oligosaccharides were isolated and partially characterized. Four of the fragments were esters of pyruvic acid. Most oligosaccharides were isolated from all three polysaccharide preparations. Three further oligosaccharides were isolated from carboxyl-reduced colanic acid and sodium borotritide was used to label the glucose derived from glucuronic acid in these fragments. One trisaccharide was obtained from periodate-oxidized polysaccharide. On the basis of these oligosaccharides a repeating hexasaccharide unit of the following structure is proposed: [Formula: see text] The significance of this structure in colanic acid biosynthesis is discussed.


2008 ◽  
Vol 190 (22) ◽  
pp. 7479-7490 ◽  
Author(s):  
Thithiwat May ◽  
Satoshi Okabe

ABSTRACT It has been shown that Escherichia coli harboring the derepressed IncFI and IncFII conjugative F plasmids form complex mature biofilms by using their F-pilus connections, whereas a plasmid-free strain forms only patchy biofilms. Therefore, in this study we investigated the contribution of a natural IncF conjugative F plasmid to the formation of E. coli biofilms. Unlike the presence of a derepressed F plasmid, the presence of a natural IncF F plasmid promoted biofilm formation by generating the cell-to-cell mating F pili between pairs of F+ cells (approximately two to four pili per cell) and by stimulating the formation of colanic acid and curli meshwork. Formation of colanic acid and curli was required after the initial deposition of F-pilus connections to generate a three-dimensional mushroom-type biofilm. In addition, we demonstrated that the conjugative factor of F plasmid, rather than a pilus synthesis function, was involved in curli production during biofilm formation, which promoted cell-surface interactions. Curli played an important role in the maturation process. Microarray experiments were performed to identify the genes involved in curli biosynthesis and regulation. The results suggested that a natural F plasmid was more likely an external activator that indirectly promoted curli production via bacterial regulatory systems (the EnvZ/OmpR two-component regulators and the RpoS and HN-S global regulators). These data provided new insights into the role of a natural F plasmid during the development of E. coli biofilms.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Yelin Zhu ◽  
Yan Hua ◽  
Biao Zhang ◽  
Lianhong Sun ◽  
Wenjie Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document