scholarly journals 03-P020 Role of mechanical tensions in regulating tissue-specific genes expression patterns and cooperative cell movements in Xenopus laevis embryos

2009 ◽  
Vol 126 ◽  
pp. S73
Author(s):  
Evgenia Kornikova
2007 ◽  
Vol 38 (3) ◽  
pp. 152-163
Author(s):  
L. V. Beloussov ◽  
E. G. Korvin-Pavlovskaya ◽  
N. N. Luchinskaya ◽  
E. S. Kornikova

2000 ◽  
Vol 113 (19) ◽  
pp. 3519-3529 ◽  
Author(s):  
C. Leclerc ◽  
S.E. Webb ◽  
C. Daguzan ◽  
M. Moreau ◽  
A.L. Miller

Through the injection of f-aequorin (a calcium-sensitive bioluminescent reporter) into the dorsal micromeres of 8-cell stage Xenopus laevis embryos, and the use of a Photon Imaging Microscope, distinct patterns of calcium signalling were visualised during the gastrulation period. We present results to show that localised domains of elevated calcium were observed exclusively in the anterior dorsal part of the ectoderm, and that these transients increased in number and amplitude between stages 9 to 11, just prior to the onset of neural induction. During this time, however, no increase in cytosolic free calcium was observed in the ventral ectoderm, mesoderm or endoderm. The origin and role of these dorsal calcium-signalling patterns were also investigated. Calcium transients require the presence of functional L-type voltage-sensitive calcium channels. Inhibition of channel activation from stages 8 to 14 with the specific antagonist R(+)BayK 8644 led to a complete inhibition of the calcium transients during gastrulation and resulted in severe defects in the subsequent formation of the anterior nervous system. BayK treatment also led to a reduction in the expression of Zic3 and geminin in whole embryos, and of NCAM in noggin-treated animal caps. The possible role of calcium transients in regulating developmental gene expression is discussed.


2005 ◽  
Vol 25 (5) ◽  
pp. 2060-2071 ◽  
Author(s):  
Gavin S. Wilkie ◽  
Philippe Gautier ◽  
Diane Lawson ◽  
Nicola K. Gray

ABSTRACT The function of poly(A)-binding protein 1 (PABP1) in poly(A)-mediated translation has been extensively characterized. Recently, Xenopus laevis oocytes and early embryos were shown to contain a novel poly(A)-binding protein, ePABP, which has not been described in other organisms. ePABP was identified as a protein that binds AU-rich sequences and prevents shortening of poly(A) tails. Here, we show that ePABP is also expressed in X. laevis testis, suggesting a more general role for ePABP in gametogenesis. We find that ePABP is conserved throughout vertebrates and that mouse and X. laevis cells have similar tissue-specific ePABP expression patterns. Furthermore, we directly assess the role of ePABP in translation. We show that ePABP is associated with polysomes and can activate the translation of reporter mRNAs in vivo. Despite its relative divergence from PABP1, we find that ePABP has similar functional domains and can bind to several PABP1 partners, suggesting that they may use similar mechanisms to activate translation. In addition, we find that PABP1 and ePABP can interact, suggesting that these proteins may be bound simultaneously to the same mRNA. Finally, we show that the activity of both PABP1 and ePABP increases during oocyte maturation, when many mRNAs undergo polyadenylation.


Gene ◽  
2004 ◽  
Vol 326 ◽  
pp. 59-66 ◽  
Author(s):  
Britta Linder ◽  
Ryan A. Cabot ◽  
Tanja Schwickert ◽  
Ralph A.W. Rupp

Development ◽  
1988 ◽  
Vol 102 (3) ◽  
pp. 517-526 ◽  
Author(s):  
R.M. Grainger ◽  
J.J. Herry ◽  
R.A. Henderson

The induction of the lens by the optic vesicle in amphibians is often cited as support for the view that a single inductive event can lead to determination in a multipotent tissue. This conclusion is based on transplantation experiments whose results indicate that many regions of embryonic ectoderm which would normally form epidermis can form a lens if brought into contact with the optic vesicle. Although additional evidence argues that during normal development other tissues, acting before the optic vesicle, also contribute to lens induction, it is still widely held, on the basis of these transplantation experiments, that the optic vesicle alone can elicit lens formation in ectoderm. While testing this conclusion by transplanting optic vesicles beneath ventral ectoderm in Xenopus laevis embryos, it became apparent that contamination of optic vesicles by presumptive lens ectoderm cells can generate lenses in these experiments, illustrating the need for adequate host and donor marking procedures. Since previous studies rarely used host and donor marking, it was not clear whether they actually demonstrated that the optic vesicle can induce lenses. Using careful host and donor marking procedures with horseradish peroxidase as a lineage tracer, we show that the optic vesicle cannot stimulate lens formation in neurula- or gastrula-stage ectoderm of Xenopus laevis. Since the general conclusion that the optic vesicle is sufficient for lens induction rests on studies in many organisms, we felt it was important to begin to test this conclusion in other amphibians as well. Similar experiments were therefore performed with Rana Palustris embryos, since it was in this organism that optic vesicle transplant studies had originally argued that this tissue alone can cause lens induction. Under conditions similar to those used in the original report, but with careful controls to assess the origin of lenses in transplants, we found that the optic vesicle alone cannot elicit lens formation. Our data lead us to propose that the optic vesicle in amphibians is not generally sufficient for lens induction. Instead, we argue that lens induction occurs by a multistep process in which an essential phase in lens determination occurs as a result of inductive interactions preceding contact of ectoderm with the optic vesicle.


2021 ◽  
Author(s):  
Ankita Yadav ◽  
Sanoj Kumar ◽  
Rita Verma ◽  
Shashi Pandey Rai ◽  
Charu Lata ◽  
...  

Abstract Legumes are an indispensable food after cereals with extensive production across the world. The legume production is imposed with limitations and has been augmented by various environmental stresses. The symbiotic relations between legumes and rhizobacteria have been an intriguing topic of research in view of their roles in plant growth, development and various stress responses. Recent advances on gene networks involving plethora of evolutionarily conserved miRNAs have been investigated pertaining to their roles in plant stress responses. The interaction between plant growth promoting rhizobacteria (PGPR) strain Pseudomonas putida RA, MTCC5279 and abiotic stress responsive miRNAs have previously been studied with roles in abiotic stress mitigation by modulating stress responsive miRNAs and their target genes. The present studyis an investigation involving the role of RA in abiotic stress responsive miR166h for drought mitigation in tolerant desi chickpea genotype. miRNA166 directed cleavage of its target, ATHB15 has been drifted of drought treated plantlets upon RA inoculation using 5´RLM-RACE analysis. Drought stressed chickpea plants when inoculated with growth promoting rhizobacteria, RA, the inverse correlation in expression patterns were noticed in miR166h and its validated target, ATHB15. Tissue-specific expression patterns in 15 days old chickpea seedlings including leaves, shoot and roots when exposed to salinity, drought and abscisic acid at different time points indicated the role of miR166 in different abiotic stress response. In view of the results, validation and functional characterization of such interactions involving stress responsive miRNAs along with microbial stress management techniques could be an important technique for crop improvement.


Sign in / Sign up

Export Citation Format

Share Document