Age-related changes in Usp9x protein expression and DNA methylation in mouse brain

2005 ◽  
Vol 140 (1-2) ◽  
pp. 17-24 ◽  
Author(s):  
Jun Xu
1997 ◽  
Vol 25 (3) ◽  
pp. 321-331 ◽  
Author(s):  
Masaki Ueno ◽  
Ichiro Akiguchi ◽  
Masanori Hosokawa ◽  
Masahiko Shinnou ◽  
Haruhiko Sakamoto ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
pp. 190-202 ◽  
Author(s):  
Leonidas Chouliaras ◽  
Roy Lardenoije ◽  
Gunter Kenis ◽  
Diego Mastroeni ◽  
Patrick R. Hof ◽  
...  

Abstract Brain aging has been associated with aberrant DNA methylation patterns, and changes in the levels of DNA methylation and associated markers have been observed in the brains of Alzheimer’s disease (AD) patients. DNA hydroxymethylation, however, has been sparsely investigated in aging and AD. We have previously reported robust decreases in 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in the hippocampus of AD patients compared to non-demented controls. In the present study, we investigated 3- and 9-month-old APPswe/PS1ΔE9 transgenic and wild-type mice for possible age-related alterations in 5-mC and 5-hmC levels in three hippocampal sub-regions using quantitative immunohistochemistry. While age-related increases in levels of both 5-mC and 5-hmC were found in wild-type mice, APPswe/PS1ΔE9 mice showed decreased levels of 5-mC at 9 months of age and no age-related changes in 5-hmC throughout the hippocampus. Altogether, these findings suggest that aberrant amyloid processing impact on the balance between DNA methylation and hydroxymethylation in the hippocampus during aging in mice.


2016 ◽  
Vol 77 (6) ◽  
pp. 567-574 ◽  
Author(s):  
Qian Zhang ◽  
Kun Yang ◽  
Pan Yangyang ◽  
Junfeng He ◽  
Sijiu Yu ◽  
...  

2001 ◽  
Vol 12 (2) ◽  
pp. 78-84 ◽  
Author(s):  
Naoto Omata ◽  
Tetsuhito Murata ◽  
Yasuhisa Fujibayashi ◽  
Atsuo Waki ◽  
Norihiro Sadato ◽  
...  

Inflammation ◽  
2016 ◽  
Vol 39 (6) ◽  
pp. 1892-1903 ◽  
Author(s):  
Yu Xia ◽  
Jun Yang ◽  
Guobin Wang ◽  
Chengrong Li ◽  
Qiu Li

1996 ◽  
Vol 42 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Han-Suk KIM ◽  
Hiroyuki ARAI ◽  
Makoto ARITA ◽  
Yuji SATO ◽  
Tohru OGIHARA ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2660-2660
Author(s):  
Ying Liang

The aging of hematopoietic stem cells (HSCs) contributes to the aging of blood system and perhaps the whole organism. The aging process is coordinately determined by both genetic and epigenetic factors, and demonstrates inter-individual variations. We used high-throughput sequencing methods to study the age-dependent changes of genome-wide DNA methylation and gene expression patterns in HSCs of C57BL/6 (B6) and DBA/2 mouse strains, which have shown natural variations in HSC aging process. We observed global age-associated decrease of DNA methylation in both strains, but D2 HSCs have a stronger loss of epigenetic control than B6 stem cells during aging. Majority age-related changes of DNA methylation occur from young to mid-aged stages. We identified stable strain-specific differentially methylated regions (DMRs) that overlap with cis-eQTLs. Moreover, transcription factor binding site motifs are more likely to be disrupted in the DMRs, suggesting the potential impact of genetic variations on epigenetic regulation of HSC aging. We further demonstrated that strain-specific DMRs have more profound effects on the aging of B6 HSCs than D2 stem cells. Transposons are differentially regulated by the DMRs in the two strains, in which D2 HSCs are prone to transposon insertion. This study comprehensively investigated the effects of natural genetic and epigenetic variations on HSC aging. Loss of DNA methylation is an epigenetic signature of stem cell aging, and DNA methylation variations correlates with genetic variations, both contributing to inter-individual differences in stem cell and perhaps organismal aging. Disclosures No relevant conflicts of interest to declare.


Gerontology ◽  
2015 ◽  
Vol 62 (3) ◽  
pp. 304-310 ◽  
Author(s):  
Agata Wronska ◽  
Aleksandra Lawniczak ◽  
Piotr M. Wierzbicki ◽  
Zbigniew Kmiec

Background: Sirtuins (SIRT1-7) have been implicated to mediate the beneficial effects of calorie restriction for healthy aging. While the physiological functions of SIRT7 are still poorly understood, SIRT7 has recently been shown to affect ribosome biogenesis, mitochondrial gene expression, and hepatic lipid metabolism. Objective: To analyze the effects of age and short-term calorie restriction (SCR) and subsequent refeeding on SIRT7 expression in key metabolic tissues. Methods: Four- and 24-month-old male Wistar rats were subjected to 40% SCR for 30 days, followed by ad libitum feeding for 2 or 4 days. Liver, white adipose tissue (WAT), heart and skeletal muscle samples were analyzed by real-time PCR and Western blotting for SIRT7 mRNA and protein expression, respectively. Results: Aging had diverse effects on SIRT7 levels in lipogenic tissues: both the mRNA and protein levels increased in the retroperitoneal depot (rWAT), did not change in the epididymal depot (eWAT), and decreased in the subcutaneous depot (sWAT) and the liver of old as compared to young animals. In the heart, extensor digitorum longus muscle (EDL) and soleus muscle (SOL), Sirt7 gene but not protein expression was lower in old than in young control rats. SCR did not affect SIRT7 expression in WAT and the liver in both age groups. In the heart of young animals, SCR did not affect SIRT7 mRNA or protein level. In EDL, SIRT7 protein but not mRNA levels decreased after SCR and remained reduced upon refeeding. In SOL, both SIRT7 mRNA and protein expression were inhibited by refeeding. In old rats, cardiac Sirt7 expression increased after SCR and refeeding. In old rats' EDL and SOL muscles, SIRT7 protein expression was inhibited by refeeding. Conclusion: Age-related changes of SIRT7 gene expression in key organs of energy homeostasis are tissue dependent.


Sign in / Sign up

Export Citation Format

Share Document