The influence of ball milling process on formation and electrochemical properties of amorphous MgNi hydrogen storage alloys

2006 ◽  
Vol 435-436 ◽  
pp. 711-716 ◽  
Author(s):  
H.Z. Yan ◽  
F.Q. Kong ◽  
W. Xiong ◽  
B.Q. Li ◽  
J. Li ◽  
...  
2019 ◽  
Vol 803 ◽  
pp. 109-114
Author(s):  
Ha Jin Lee ◽  
Du Yeol Kim ◽  
Soon Ki Jeong

This study investigates the electrochemical properties of ball-milled copper hexacyanoferrate (CuHCF), a Prussian blue analogue, as a cathode material in aqueous calcium-ion batteries (CIBs). X-ray diffraction analysis confirmed that the ball milling process did not destroy the crystal structure of the CuHCF active material. The general grain size and crystal surface of the synthesized CuHCF active materials were confirmed from the scanning electron microscopy (SEM) images. The electrochemical test results revealed that prolonged ball milling improved the charge/discharge capacity in the initial cycle. After 200 cycles, structural collapse of the CuHCF electrode occurred, as observed by SEM.


2010 ◽  
Vol 35 (9) ◽  
pp. 4027-4040 ◽  
Author(s):  
Cheng-Hong Liu ◽  
Yi-Chia Kuo ◽  
Bing-Hung Chen ◽  
Chan-Li Hsueh ◽  
Kuo-Jen Hwang ◽  
...  

2021 ◽  
Vol 217 (1) ◽  
pp. 255-264
Author(s):  
Xiaomeng Zhu ◽  
Xiaolan Cai ◽  
Shuang Zhang ◽  
Lei Wang ◽  
Xudong Cui

Author(s):  
Fenglin Wang ◽  
Yunping Li ◽  
Xiandong Xu ◽  
Yuichiro Koizumi ◽  
Kenta Yamanaka ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Haimei Li ◽  
Xianglong Li ◽  
Denghui Wang ◽  
Siyuan Zhang ◽  
Wenqiang Xu ◽  
...  

A silicon nanoplate-decorated graphite design is developed for lithium battery anodes via a simple ball milling process. The resultant silicon-graphite electrodes show high cyclic stability with high capacity, superior rate...


Sign in / Sign up

Export Citation Format

Share Document