Additive manufacturing of W–Fe composites using laser metal deposition: Microstructure, phase transformation, and mechanical properties

2021 ◽  
Vol 811 ◽  
pp. 141036
Author(s):  
Hui Chen ◽  
Lei Ye ◽  
Yong Han ◽  
Chao Chen ◽  
Jinglian Fan
Author(s):  
Kamardeen Olajide Abdulrahman ◽  
Esther T. Akinlabi ◽  
Rasheedat M. Mahamood

Three-dimensional printing has evolved into an advanced laser additive manufacturing (AM) process with capacity of directly producing parts through CAD model. AM technology parts are fabricated through layer by layer build-up additive process. AM technology cuts down material wastage, reduces buy-to-fly ratio, fabricates complex parts, and repairs damaged old functional components. Titanium aluminide alloys fall under the group of intermetallic compounds known for high temperature applications and display of superior physical and mechanical properties, which made them most sort after in the aeronautic, energy, and automobile industries. Laser metal deposition is an AM process used in the repair and fabrication of solid components but sometimes associated with thermal induced stresses which sometimes led to cracks in deposited parts. This chapter looks at some AM processes with more emphasis on laser metal deposition technique, effect of LMD processing parameters, and preheating of substrate on the physical, microstructural, and mechanical properties of components produced through AM process.


Author(s):  
Dongdong Gu ◽  
Sainan Cao ◽  
Kaijie Lin

In this study, laser metal deposition (LMD) additive manufacturing was used to deposit the pure Inconel 625 alloy and the TiC/Inconel 625 composites with different starting sizes of TiC particles, respectively. The influence of the additive TiC particle and its original size on the constitutional phases, microstructural features, and mechanical properties of the LMD-processed parts was studied. The incorporation of TiC particles significantly changed the prominent texture of Ni–Cr matrix phase from (200) to (100). The bottom and side parts of each deposited track showed mostly the columnar dendrites, while the cellular dendrites were prevailing in the microstructure of the central zone of the deposited track. As the nano-TiC particles were added, more columnar dendrites were observed in the solidified molten pool. The incorporation of nano-TiC particles induced the formation of the significantly refined columnar dendrites with the secondary dendrite arms developed considerably well. With the micro-TiC particles added, the columnar dendrites were relatively coarsened and highly degenerated, with the secondary dendrite growth being entirely suppressed. The cellular dendrites were obviously refined by the additive TiC particles. When the nano-TiC particles were added to reinforce the Inconel 625, the significantly improved microhardness, tensile property, and wear property were obtained without sacrificing the ductility of the composites.


2019 ◽  
Vol 804 ◽  
pp. 163-191 ◽  
Author(s):  
Abolfazl Azarniya ◽  
Xabier Garmendia Colera ◽  
Mohammad J. Mirzaali ◽  
Saeed Sovizi ◽  
Flavio Bartolomeu ◽  
...  

2018 ◽  
Vol 30 (2) ◽  
pp. 022001 ◽  
Author(s):  
Felix Spranger ◽  
Benjamin Graf ◽  
Michael Schuch ◽  
Kai Hilgenberg ◽  
Michael Rethmeier

Author(s):  
Hanyu Song ◽  
Minglang Li ◽  
Muxuan Wang ◽  
Benxin Wu ◽  
Ze Liu ◽  
...  

Abstract A preliminary experimental study on “warm ultrasonic impact-assisted laser metal deposition” (WUI-LMD) is reported, and such a study is rare in literatures to the authors' knowledge. In WUI-LMD, an ultrasonic impact treatment (UIT) tip is placed near laser spot for in-situ treatment of laser-deposited warm solid material, and the UIT and LMD processes proceed simultaneously. Under the conditions investigated, it is found that in-situ UIT during WUI-LMD can be much more effective in reducing porosity than a post-process UIT. Possible underlying mechanisms are analyzed. WUI-LMD has a great potential to reduce defects and improve mechanical properties without increasing manufacturing time.


2015 ◽  
Vol 42 (5) ◽  
pp. 0503009
Author(s):  
方金祥 Fang Jinxiang ◽  
董世运 Dong Shiyun ◽  
徐滨士 Xu Binshi ◽  
王玉江 Wang Yujiang ◽  
何鹏 He Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document