scholarly journals Study of hMSC proliferation and differentiation on Mg and Mg–Sr containing biphasic β-tricalcium phosphate and amorphous calcium phosphate ceramics

2016 ◽  
Vol 64 ◽  
pp. 219-228 ◽  
Author(s):  
Satish S. Singh ◽  
Abhijit Roy ◽  
Boeun Lee ◽  
Prashant N. Kumta
2016 ◽  
Vol 721 ◽  
pp. 182-186
Author(s):  
Zilgma Irbe ◽  
Dagnija Loca ◽  
Agnese Pura ◽  
Liga Berzina-Cimdina

α-Tricalcium phosphate is an important ingredient of calcium phosphate bone cements, which are used for bone defect augmentation and repair. In this study sub-micrometre sized α­tricalcium phosphate particles were synthesized by heat treating amorphous calcium phosphate. Size of synthesized particles depended on duration and temperature of heat treatment. Longer duration and higher temperatures produced larger particles. The reactivity of synthesized particles did not correlate with particle size – the smallest particles did not have the highest reactivity. The most reactive particles were prepared at 700-800 °C. The prepared particles were more reactive than those of conventionally synthesized α-tricalcium phosphate.


2007 ◽  
Vol 330-332 ◽  
pp. 91-94 ◽  
Author(s):  
Y. Zhang ◽  
Yoshiyuki Yokogawa ◽  
Tetsuya Kameyama

Biphasic calcium phosphate (BCP) ceramics, a mixture of hydroxyapatite (HAp) and beta-tricalcium phosphate (β-TCP), of varying HAp/β-TCP ratios were prepared from fine powders. Porous BCP ceramic materials with HAp/β-TCP weight rations of 20/80, 40/60, and 80/20 were prepared. In this study, the bioactivity is reduced at a larger HAp content rate, which is likely related to the high driving pore for the formation of a new phase, and the reaction rate was proportional to the β-TCP. The porous BCP ceramics having a bigger porosity rate can easily under up dissolution. The powder having a larger β-TCP content rate can easily generate a new phase. The dissolution results confirmed that the biodegradation of calcium phosphate ceramics could be controlled by simply adjusting the amount of HAp or β-TCP in the ceramics and porosity rate.


2005 ◽  
Vol 288-289 ◽  
pp. 549-552
Author(s):  
Shi Pu Li ◽  
Hong Lian Dai ◽  
Yu Hua Yan ◽  
Xian Ying Cao ◽  
Qi Xin Zheng

Mice macrophages which were mixed with β-tricalcium phosphate (β-TCP) ceramics powder were cultured, both calcium and phosphorus concentrations in the culture medium were evidently higher than that of β-TCP ceramics powder without cells. The microscope and SEM observation showed that macrophages wrapped β-TCP particles, and then phagocytized them into cytoplasm. The pH values inside and outside macrophage in β-TCP-bearing were tested. The histochemistry observation showed that there were many carbonic anhydrase positive grains in the cytochylema of macroghage after β-TCP ceramics powder being implanted. TEM investigation indicated that many β-TCP particles were phagocytized into the cytochylema of macroghage, and then vacuole was found after particles had degraded. The results showed that macrophages could take part in the degradation of calcium phosphate ceramics in two different ways.


2008 ◽  
Vol 368-372 ◽  
pp. 1206-1208 ◽  
Author(s):  
Yan Bao Li ◽  
Dong Xu Li ◽  
Wen Jian Weng

Biphasic tricalcium phosphate (BTCP) powders composed of α-tricalcium phosphate (α-TCP) and β-tricalcium phosphate (β-TCP) were prepared using amorphous calcium phosphate (ACP) precursor after heat treatment at 800oC. The in vitro dissolution behavior of the powders was examined after soaked in 0.1M NaAc-HAc buffer solution for different times. It was revealed that the Ca2+ and PO4 3- concentration, and pH value of the BTCP-soaked solution are higher than those of the α-TCP- and β-TCP-soaked solutions. The dissolution behavior of BTCP powders was explained. The specific dissolution behavior of BTCP powders can widen the biodegradation range of calcium phosphate family.


2012 ◽  
Vol 610-613 ◽  
pp. 2328-2331 ◽  
Author(s):  
Nan Hee Lee ◽  
Kyu Hong Hwang ◽  
Jong Kook Lee

Biphasic calcium phosphate bioceramics were fabricated from the recycling of bone ash which is mostly used as raw materials of bone china. Precursor calcium phosphate powders were prepared by soaking the commercial bone ash in 0.1 M of NaOH solution at 80°C for 4 h. Calcium phosphate powders was obtained by calcination at 800°C for 1 h to completely remove residual organics. Biphasic calcium phosphate bioceramics which is composed of hydroxyapatite and tricalcium phosphate was fabricated by the sintering of pressed compacts at 1200°C for 1 h under moisture protection. The bone ash derived-biphasic calcium phosphate ceramics consists of mostly HA and small amounts of α-tricalcium phosphate, magnesium oxide and calcium oxide. After polishing the HA ceramics, they were immersed in buffered water at 37°C for 3 and 7 days. The bone ash derived- biphasic calcium phosphate ceramics show high biostability in liquid environment with immersion time compared with commercial calcium phosphate ceramics.


2021 ◽  
Vol 54 (3) ◽  
pp. 165
Author(s):  
Sri Kunarti ◽  
Widya Saraswati ◽  
Dur Muhammad Lashari ◽  
Nadhifa Salma ◽  
Tasya Nafatila

Background: Dental caries is a multifactorial disease indicated by the progressive demineralisation process of dental tissue. It is caused by an imbalance between the remineralisation and demineralisation processes. The focus of caries management is on prevention. Providing materials that can induce remineralisation is one management of caries prevention. Various materials have been or are being researched, such as casein phosphopeptide amorphous calcium phosphate (CPP–ACP), tricalcium phosphate (fTCP), bioactive glass (BAG), and nanotechnologies such as nano-hydroxyapatite (n-HAP) and silver nano fluorine (NSF). Purpose: This study aims to review the development of enamel remineralisation inducing materials as a newer approach in caries prevention. Review: Various ingredients have been shown to increase enamel remineralisation through different mechanisms in preventing the development of carious lesions. Conclusion: CPP–ACP, fTCP, BAG, n-HAP, and NSF can induce enamel remineralisation as caries prevention agents. n-HAP and NSF are the most effective agents to enhance enamel remineralisation to prevent caries.


Sign in / Sign up

Export Citation Format

Share Document