Influence of co-culture on osteogenesis and angiogenesis of bone marrow mesenchymal stem cells and aortic endothelial cells

2016 ◽  
Vol 108 ◽  
pp. 1-9 ◽  
Author(s):  
Gorke Gurel Pekozer ◽  
Gamze Torun Kose ◽  
Vasif Hasirci
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Dequan Li ◽  
Cong Wang ◽  
Chuang Chi ◽  
Yuanyuan Wang ◽  
Jing Zhao ◽  
...  

Background. Systemic inflammatory response syndrome (SIRS) accompanied by trauma can lead to multiple organ dysfunction syndrome (MODS) and even death. Early inhibition of the inflammation is necessary for damage control. Bone marrow mesenchymal stem cells (BMSCs), as a novel therapy modality, have been shown to reduce inflammatory responses in human and animal models.Methods. In this study, we used Western blot, quantitative PCR, and enzyme-linked immunosorbent assay (ELISA) to assess the activity of BMSCs to suppress the inflammation induced by lipopolysaccharide (LPS) in human umbilical cord endothelial cells (HUVECs) and alveolar macrophages.Results. Our results demonstrated that LPS caused an inflammatory response in alveolar macrophages and HUVECs, increased permeability of HUVEC, upregulated expression of toll-like receptor (TLR) 2, TLR4, phosphorylated p65, downregulated release of IL10, and promoted release of TNF-αin both cells. Coculture with BMSCs attenuated all of these activities induced by LPS in the two tested cell types.Conclusions. Together, our results demonstrate that BMSCs dosage dependently attenuates the inflammation damage of alveolar macrophages and HUVECs induced by LPS.


2018 ◽  
Vol 55 (2) ◽  
pp. 257-265 ◽  
Author(s):  
Chengen Wang ◽  
Yuan Li ◽  
Min Yang ◽  
Yinghua Zou ◽  
Huihui Liu ◽  
...  

2020 ◽  
Author(s):  
Shanhong Fang ◽  
Tianmin He ◽  
Jiarun Jiang ◽  
Yongfeng Li ◽  
Heling Huang ◽  
...  

Abstract Background: Osteonecrosis of femoral head (ONFH) is a common ischemic disease that induces femoral head necrosis. The role of exosomes and miRNA in ONFH has been elucidated, however, whether miRNA-modified exosomes improve the therapy of ONFH is not clear.Methods: We screened ONFH-related miRNAs by RNA sequencing in plasma exosomes of ONFH patients and healthy donors. The key miRNA was overexpressed in bone marrow mesenchymal stem cells (BMSC) exosomes. The regulatory functions of miRNA-modified BMSC exosomes in vascular endothelial cells were illustrated through angiogenesis assay and scratch assay.Results: We identified 9 differently expressed miRNAs (DEmiRNAs) in plasma exosomes between ONFH and healthy groups, with 6 up-regulated and 3 down-regulated miRNAs. Function and pathway analysis revealed DEmiRNAs were primarily involved in angiogenesis, cell migration, focal adhesion. Moreover, miR-150-5p was declined in ONFH exosomes and regulated multiple angiogenesis-related pathways. The miR-150-5p-overexpressed BMSC exosomes were successfully obtained and transported miR-150-5p to endothelial cells. Moreover, the miR-150-5p-modified BMSC exosomes promoted the angiogenesis and migration of endothelial cells.Conclusion: Our results elucidate the exosomal miRNA expression profiles in ONFH, and miR-150-5p-modified BMSC exosomes protect against ONFH by promoting angiogenesis, suggesting a new molecular knowledge for the clinical application of ONFH.


Sign in / Sign up

Export Citation Format

Share Document