Monitoring water transfers in limestone building materials with water retention curve and Ground Penetrating Radar: A comparative study

2018 ◽  
Vol 100 ◽  
pp. 31-39 ◽  
Author(s):  
Xiaoting Xiao ◽  
Borui Guan ◽  
Amine Ihamouten ◽  
Géraldine Villain ◽  
Xavier Dérobert ◽  
...  
2013 ◽  
Vol 17 (2) ◽  
pp. 611-618 ◽  
Author(s):  
A. Dagenbach ◽  
J. S. Buchner ◽  
P. Klenk ◽  
K. Roth

Abstract. We show the potential of on-ground Ground-Penetrating Radar (GPR) to identify the parameterisation of the soil water retention curve, i.e. its functional form, with a semi-quantitative analysis based on numerical simulations of the radar signal. An imbibition and drainage experiment has been conducted at the ASSESS-GPR site to establish a fluctuating water table, while an on-ground GPR antenna recorded traces over time at a fixed location. These measurements allow to identify and track the capillary fringe in the soil. The typical dynamics of soil water content with a transient water table can be deduced from the recorded radargrams. The characteristic reflections from the capillary fringes in model soils that are described by commonly used hydraulic parameterisations are investigated by numerical simulations. The parameterisations used are (i) full van Genuchten, (ii) simplified van Genuchten with m = 1 − 1/n and (iii) Brooks–Corey. All three yield characteristically different reflections, which allows the identification of an appropriate parameterisation by comparing to the measured signals. We show that for the sand used here, these signals are not consistent with the commonly used simplified van Genuchten parameterisation with m = 1 − 1/n.


2017 ◽  
Vol 16 (4) ◽  
pp. 869-877
Author(s):  
Vasile Lucian Pavel ◽  
Florian Statescu ◽  
Dorin Cotiu.ca-Zauca ◽  
Gabriela Biali ◽  
Paula Cojocaru

Pedosphere ◽  
2006 ◽  
Vol 16 (2) ◽  
pp. 137-146 ◽  
Author(s):  
Guan-Hua HUANG ◽  
Ren-Duo ZHANG ◽  
Quan-Zhong HUANG

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yan Gao ◽  
Kai Chang ◽  
Xuguang Xing ◽  
Jiaping Liang ◽  
Nian He ◽  
...  

PurposeTraditional laboratory measurements of soil water diffusivity (D) and soil water retention curve (SWRC) are always time-consuming and labor-intensive. Therefore, this paper aims to present a simple and robust test method for determining D and SWRC without reducing accuracy.Design/methodology/approachIn this study, a D model of unsaturated soil was established based on Gardner–Russo model and then a combination of Gardner–Russo model with one-dimensional horizontal absorption method to obtain n and a parameters of Gardner–Russo model. One-dimensional horizontal absorption experiments on loam, silt loam and sandy clay loam were conducted to obtain the relationships between measured infiltration rate and cumulative infiltration with wetting front distance. Based on the obtained relationships, the measured infiltration data from the one-dimensional horizontal absorption tests were used to calculate n and a parameters and further constructing D and SWRC.FindingsBoth the calculated D and SWRC inversed from the infiltration data were in good agreement with the measured ones that obtained from the traditional horizontal absorption method and the centrifuge method, respectively. Error analysis indicated that only the infiltration data are enough to reliably synchronously determine D and SWRC.Originality/valueA simple and robust method is proposed for synchronous determination of soil water diffusivity and water retention curve.


Sign in / Sign up

Export Citation Format

Share Document