Age-related increase in mitochondrial DNA damage and loss of DNA repair capacity in the neural retina

2010 ◽  
Vol 31 (11) ◽  
pp. 2002-2010 ◽  
Author(s):  
Ai Ling Wang ◽  
Thomas J. Lukas ◽  
Ming Yuan ◽  
Arthur H. Neufeld
2017 ◽  
Author(s):  
Minxian Qian ◽  
Zuojun Liu ◽  
Linyuan Peng ◽  
Fanbiao Meng ◽  
Xiaolong Tang ◽  
...  

AbstractDNA damage accumulates with age1. However, whether and how robust DNA repair machinery promotes longevity is elusive. Here, we demonstrate that activation of ataxia-telangiectasia mutated (ATM) via low dose of chloroquine (CQ) promotes DNA damage clearance, rescues age-related metabolic shift, and extends lifespan in nematodes and mice. Molecularly, ATM phosphorylates SIRT6 deacetylase and thus prevents MDM2-mediated ubiquitination and proteasomal degradation. Extra copies of Sirt6 in Atm-/- mice extend lifespan, accompanied with restored metabolic homeostasis. In a progeria mouse model with low ATM protein level and DNA repair capacity, the treatment with CQ ameliorates premature aging features and extends lifespan. Thus, our data highlights a pro-longevity role of ATM, for the first time establishing direct causal links between robust DNA repair machinery and longevity, and providing therapeutic strategy for progeria and age-related metabolic diseases.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 176 ◽  
Author(s):  
Gyanesh Singh ◽  
U C Pachouri ◽  
Devika Chanu Khaidem ◽  
Aman Kundu ◽  
Chirag Chopra ◽  
...  

Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage.  One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Minxian Qian ◽  
Zuojun Liu ◽  
Linyuan Peng ◽  
Xiaolong Tang ◽  
Fanbiao Meng ◽  
...  

DNA damage accumulates with age (Lombard et al., 2005). However, whether and how robust DNA repair machinery promotes longevity is elusive. Here, we demonstrate that ATM-centered DNA damage response (DDR) progressively declines with senescence and age, while low dose of chloroquine (CQ) activates ATM, promotes DNA damage clearance, rescues age-related metabolic shift, and prolongs replicative lifespan. Molecularly, ATM phosphorylates SIRT6 deacetylase and thus prevents MDM2-mediated ubiquitination and proteasomal degradation. Extra copies of Sirt6 extend lifespan in Atm-/- mice, with restored metabolic homeostasis. Moreover, the treatment with CQ remarkably extends lifespan of Caenorhabditis elegans, but not the ATM-1 mutants. In a progeria mouse model with low DNA repair capacity, long-term administration of CQ ameliorates premature aging features and extends lifespan. Thus, our data highlights a pro-longevity role of ATM, for the first time establishing direct causal links between robust DNA repair machinery and longevity, and providing therapeutic strategy for progeria and age-related metabolic diseases.


Author(s):  
Jiyeon Leem ◽  
Guang-Yu Bai ◽  
Jae-Sung Kim ◽  
Jeong Su Oh

If fertilization does not occur for a prolonged time after ovulation, oocytes undergo a time-dependent deterioration in quality in vivo and in vitro, referred to as postovulatory aging. The DNA damage response is thought to decline with aging, but little is known about how mammalian oocytes respond to the DNA damage during in vitro postovulatory aging. Here we show that increased WIP1 during in vitro postovulatory aging suppresses the capacity of oocytes to respond to and repair DNA damage. During in vitro aging, oocytes progressively lost their capacity to respond to DNA double-strand breaks, which corresponded with an increase in WIP1 expression. Increased WIP1 impaired the amplification of γ-H2AX signaling, which reduced the DNA repair capacity. WIP1 inhibition restored the DNA repair capacity, which prevented deterioration in oocyte quality and improved the fertilization and developmental competence of aged oocytes. Importantly, WIP1 was also found to be high in maternally aged oocytes, and WIP1 inhibition enhanced the DNA repair capacity of maternally aged oocytes. Therefore, our results demonstrate that increased WIP1 is responsible for the age-related decline in DNA repair capacity in oocytes, and WIP1 inhibition could restore DNA repair capacity in aged oocytes.


2020 ◽  
Vol 35 (3) ◽  
pp. 529-544 ◽  
Author(s):  
F Horta ◽  
S Catt ◽  
P Ramachandran ◽  
B Vollenhoven ◽  
P Temple-Smith

Abstract STUDY QUESTION Does female ageing have a negative effect on the DNA repair capacity of oocytes fertilised by spermatozoa with controlled levels of DNA damage? SUMMARY ANSWER Compared to oocytes from younger females, oocytes from older females have a reduced capacity to repair damaged DNA introduced by spermatozoa. WHAT IS KNOWN ALREADY The reproductive lifespan in women declines with age predominantly due to poor oocyte quality. This leads to decreased reproductive outcomes for older women undergoing assisted reproductive technology (ART) treatments, compared to young women. Ageing and oocyte quality have been clearly associated with aneuploidy, but the range of factors that influence this change in oocyte quality with age remains unclear. The DNA repair activity prior to embryonic genomic activation is considered to be of maternal origin, with maternal transcripts and proteins controlling DNA integrity. With increasing maternal age, the number of mRNAs stored in oocytes decreases. This could result in diminished efficiency of DNA repair and/or negative effects on embryo development, especially in the presence of DNA damage. STUDY DESIGN, SIZE, DURATION Oocytes from two age groups of 30 super-ovulated female mice (young: 5–8 weeks old, n = 15; old: 42–45 weeks old, n = 15) were inseminated with sperm from five males with three different controlled DNA damage levels; control: ≤10%, 1 Gray (Gy): 11–30%, and 30 Gy: >30%. Inseminated oocytes (young: 125, old: 78) were assessed for the formation of zygotes (per oocyte) and blastocysts (per zygote). Five replicates of five germinal vesicles (GVs) and five MII oocytes from each age group were analysed for gene expression. The DNA damage response (DDR) was assessed in a minimum of three IVF replicates in control and 1 Gy zygotes and two-cell embryos using γH2AX labelling. PARTICIPANTS/MATERIALS, SETTING, METHODS Swim-up sperm samples from the cauda epididymidis of C57BL6 mice were divided into control (no irradiation) and 1- and 30-Gy groups. Treated spermatozoa were irradiated at 1 and 30 Gy, respectively, using a linear accelerator Varian 21iX. Following irradiation, samples were used for DNA damage assessment (Halomax) and for insemination. Presumed zygotes were cultured in a time-lapse incubator (MIRI, ESCO). Gene expression of 91 DNA repair genes was assessed using the Fluidigm Biomark HD system. The DNA damage response in zygotes (6–8 h post-fertilisation) and two-cell embryos (22–24 h post-fertilisation) was assessed by immunocytochemical analysis of γH2AX using confocal microscopy (Olympus FV1200) and 3D volumetric analysis using IMARIS software. MAIN RESULTS AND THE ROLE OF CHANCE The average sperm DNA damage for the three groups was statistically different (control: 6.1%, 1 Gy: 16.1%, 30 Gy: 53.1%, P < 0.0001), but there were no significant differences in fertilisation rates after IVF within or between the two age groups [(young; control: 86.79%, 1 Gy: 82.75%, 30 Gy: 76.74%) (old; control: 93.1%, 1 Gy: 70.37%, 30 Gy: 68.18%) Fisher’s exact]. However, blastocyst rates were significantly different (P < 0.0001) among the groups [(young; control: 86.95%, 1 Gy: 33.33%, 30 Gy: 0.0%) (old; control: 70.37%, 1 Gy: 0.0%, 30 Gy: 0.0%)]. Between the age groups, 1-Gy samples showed a significant decrease in the blastocyst rate in old females compared to young females (P = 0.0166). Gene expression analysis revealed a decrease in relative expression of 21 DNA repair genes in old GV oocytes compared to young GV oocytes (P < 0.05), and similarly, old MII oocytes showed 23 genes with reduced expression compared to young MII oocytes (P < 0.05). The number of genes with decreased expression in older GV and MII oocytes significantly affected pathways such as double strand break (GV: 5; MII: 6), nucleotide excision repair (GV: 8; MII: 5) and DNA damage response (GV: 4; MII: 8). There was a decreased DDR in zygotes and in two-cell embryos from old females compared to young regardless of sperm treatment (P < 0.05). The decrease in DNA repair gene expression of oocytes and decreased DDR in embryos derived from older females suggests that ageing results in a diminished DNA repair capacity. LARGE-SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION Ionising radiation was used only for experimental purposes, aiming at controlled levels of sperm DNA damage; however, it can also damage spermatozoa proteins. The female age groups selected in mice were intended to model effects in young and old women, but clinical studies are required to demonstrate a similar effect. WIDER IMPLICATIONS OF THE FINDINGS Fertilisation can occur with sperm populations with medium and high DNA damage, but subsequent embryo growth is affected to a greater extent with aging females, supporting the theory that oocyte DNA repair capacity decreases with age. Assessment of the oocyte DNA repair capacity may be a useful diagnostic tool for infertile couples. STUDY FUNDING/COMPETING INTEREST(S) Funded by the Education Program in Reproduction and Development, Department of Obstetrics and Gynaecology, Monash University. None of the authors has any conflict of interest to report.


1998 ◽  
Vol 29 (6) ◽  
pp. 617-623 ◽  
Author(s):  
F.V. Pallardó ◽  
M. Asensi ◽  
J. García de la Asunciôn ◽  
V. Antón ◽  
A. Lloret ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Emma Bolderson ◽  
Joshua T. Burgess ◽  
Jun Li ◽  
Neha S. Gandhi ◽  
Didier Boucher ◽  
...  

AbstractThe DNA repair capacity of human cells declines with age, in a process that is not clearly understood. Mutation of the nuclear envelope protein barrier-to-autointegration factor 1 (Banf1) has previously been shown to cause a human progeroid disorder, Néstor–Guillermo progeria syndrome (NGPS). The underlying links between Banf1, DNA repair and the ageing process are unknown. Here, we report that Banf1 controls the DNA damage response to oxidative stress via regulation of poly [ADP-ribose] polymerase 1 (PARP1). Specifically, oxidative lesions promote direct binding of Banf1 to PARP1, a critical NAD+-dependent DNA repair protein, leading to inhibition of PARP1 auto-ADP-ribosylation and defective repair of oxidative lesions, in cells with increased Banf1. Consistent with this, cells from patients with NGPS have defective PARP1 activity and impaired repair of oxidative lesions. These data support a model whereby Banf1 is crucial to reset oxidative-stress-induced PARP1 activity. Together, these data offer insight into Banf1-regulated, PARP1-directed repair of oxidative lesions.


2013 ◽  
Vol 31 (6_suppl) ◽  
pp. 305-305
Author(s):  
Timothy F. Donahue ◽  
S. Machele Donat ◽  
Himali Patel ◽  
Joanne F. Chou ◽  
Sharon Bayuga ◽  
...  

305 Background: NMIBC requires lifelong surveillance to monitor for recurrence. Identifying patients at greatest risk and altering surveillance accordingly could impact health care cost. Inadequate DNA repair may increase the risk for developing subsequent tumors. This prospective study evaluated the association between DNA damage/repair capacity and tumor recurrence with the goal of finding new prognostic markers. Methods: Patients newly diagnosed with NMIBC (n=100) who received standard care provided blood samples and completed risk surveys and were followed for a median of 78 mos. DNA damage in peripheral blood lymphocytes measured with the Comet Assay revealed constitutive damage, sensitivity to carcinogens after exposing cells to the tobacco-derived carcinogen BPDE, and repair capacity after allowing cells to repair post BPDE induced damage. DNA damage was expressed as log-transformed Tail Intensity. Median time to recurrence and cumulative incidence of recurrence at 4 mos were estimated by Kaplan-Meier methods and compared by log-rank test. Hazard ratios for recurrence in association with patient characteristics and DNA damage/repair variables were estimated with Cox proportional hazard models. Associations of DNA damage/repair variables between patients’ characteristics were tested with Wilcoxon Rank-Sum. Results: This NMIBC cohort included patients with mean age 64 yrs and 71% males. Tumors were high grade in 74% and multifocal in 34%. Median time to recurrence was 6 months and 42/69 recurrences occurred <4 mos. Patients with higher grade/stage, multifocality, and intravesical therapy had higher cumulative incidence of recurrence at 4 mos (p<0.01). Those with higher stage/grade compared to low stage/grade tumors showed significant reduction in DNA repair capacity after exposure to BPDE (p<0.03). Conclusions: In univariate analysis, DNA damage is associated with higher stage and higher grade tumors; however host DNA damage/repair capacity does not predict recurrence in NMIBC. Traditional disease characteristics including multifocality, high-grade, increasing stage, and intravesical therapy remained predictors of recurrence.


Author(s):  
Genro Kashino ◽  
Keiji Suzuki ◽  
Naoki Matsuda ◽  
Seiji Kodama ◽  
Koji Ono ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document