scholarly journals Mapping functional brain organization: Rethinking lesion symptom mapping and advanced neuroimaging methods in the understanding of human cognition

2018 ◽  
Vol 115 ◽  
pp. 1-4
Author(s):  
Magdalena Chechlacz ◽  
Pia Rotshtein ◽  
Peter C. Hansen
2019 ◽  
Vol 30 (2) ◽  
pp. 824-835 ◽  
Author(s):  
Susanne Weis ◽  
Kaustubh R Patil ◽  
Felix Hoffstaedter ◽  
Alessandra Nostro ◽  
B T Thomas Yeo ◽  
...  

Abstract A large amount of brain imaging research has focused on group studies delineating differences between males and females with respect to both cognitive performance as well as structural and functional brain organization. To supplement existing findings, the present study employed a machine learning approach to assess how accurately participants’ sex can be classified based on spatially specific resting state (RS) brain connectivity, using 2 samples from the Human Connectome Project (n1 = 434, n2 = 310) and 1 fully independent sample from the 1000BRAINS study (n = 941). The classifier, which was trained on 1 sample and tested on the other 2, was able to reliably classify sex, both within sample and across independent samples, differing both with respect to imaging parameters and sample characteristics. Brain regions displaying highest sex classification accuracies were mainly located along the cingulate cortex, medial and lateral frontal cortex, temporoparietal regions, insula, and precuneus. These areas were stable across samples and match well with previously described sex differences in functional brain organization. While our data show a clear link between sex and regionally specific brain connectivity, they do not support a clear-cut dimorphism in functional brain organization that is driven by sex alone.


NeuroImage ◽  
2012 ◽  
Vol 59 (3) ◽  
pp. 2923-2931 ◽  
Author(s):  
Jane E. Joseph ◽  
Joshua E. Swearingen ◽  
Christine R. Corbly ◽  
Thomas E. Curry ◽  
Thomas H. Kelly

2021 ◽  
Author(s):  
Taylor S Bolt ◽  
Jason Nomi ◽  
Danilo Bzdok ◽  
Catie Chang ◽  
B.T. Thomas Yeo ◽  
...  

The characterization of intrinsic functional brain organization has been approached from a multitude of analytic techniques and methods. We are still at a loss of a unifying conceptual framework for capturing common insights across this patchwork of empirical findings. By analyzing resting-state fMRI data from the Human Connectome Project using a large number of popular analytic techniques, we find that all results can be seamlessly reconciled by three fundamental low-frequency spatiotemporal patterns that we have identified via a novel time-varying complex pattern analysis. Overall, these three spatiotemporal patterns account for a wide variety of previously observed phenomena in the resting-state fMRI literature including the task-positive/task-negative anticorrelation, the global signal, the primary functional connectivity gradient and the network community structure of the functional connectome. The shared spatial and temporal properties of these three canonical patterns suggest that they arise from a single hemodynamic mechanism.


2016 ◽  
Vol 20 (5) ◽  
pp. e12450 ◽  
Author(s):  
Amy S. Finn ◽  
Jennifer E. Minas ◽  
Julia A. Leonard ◽  
Allyson P. Mackey ◽  
John Salvatore ◽  
...  

2018 ◽  
Author(s):  
Evelyn MR Lake ◽  
Emily S Finn ◽  
Stephanie M Noble ◽  
Tamara Vanderwal ◽  
Xilin Shen ◽  
...  

ABSTRACTAutism Spectrum Disorder (ASD) is associated with multiple complex abnormalities in functional brain connectivity measured with functional magnetic resonance imaging (fMRI). Despite much research in this area, to date, neuroimaging-based models are not able to characterize individuals with ASD with sufficient sensitivity and specificity; this is likely due to the heterogeneity and complexity of this disorder. Here we apply a data-driven subject-level approach, connectome-based predictive modeling, to resting-state fMRI data from a set of individuals from the Autism Brain Imaging Data Exchange. Using leave-one-subject-out and split-half analyses, we define two functional connectivity networks that predict continuous scores on the Social Responsiveness Scale (SRS) and Autism Diagnostic Observation Schedule (ADOS) and confirm that these networks generalize to novel subjects. Notably, these networks were found to share minimal anatomical overlap. Further, our results generalize to individuals for whom SRS/ADOS scores are unavailable, predicting worse scores for ASD than typically developing individuals. In addition, predicted SRS scores for individuals with attention-deficit/hyperactivity disorder (ADHD) from the ADHD-200 Consortium are linked to ADHD symptoms, supporting the hypothesis that the functional brain organization changes relevant to ASD severity share a component associated with attention. Finally, we explore the membership of predictive connections within conventional (atlas-based) functional networks. In summary, our results suggest that an individual’s functional connectivity profile contains information that supports dimensional, non-binary classification in ASD, aligning with the goals of precision medicine and individual-level diagnosis.


Sign in / Sign up

Export Citation Format

Share Document