The stability of a diffusion model of plankton allelopathy with spatio–temporal delays

2009 ◽  
Vol 10 (4) ◽  
pp. 2036-2046 ◽  
Author(s):  
Canrong Tian ◽  
Lai Zhang ◽  
Zhi Ling
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuping Li ◽  
Xiaoju Liang ◽  
Xuguo Zhou ◽  
Yu An ◽  
Ming Li ◽  
...  

AbstractGlycyrrhiza, a genus of perennial medicinal herbs, has been traditionally used to treat human diseases, including respiratory disorders. Functional analysis of genes involved in the synthesis, accumulation, and degradation of bioactive compounds in these medicinal plants requires accurate measurement of their expression profiles. Reverse transcription quantitative real-time PCR (RT-qPCR) is a primary tool, which requires stably expressed reference genes to serve as the internal references to normalize the target gene expression. In this study, the stability of 14 candidate reference genes from the two congeneric species G. uralensis and G. inflata, including ACT, CAC, CYP, DNAJ, DREB, EF1, RAN, TIF1, TUB, UBC2, ABCC2, COPS3, CS, R3HDM2, were evaluated across different tissues and throughout various developmental stages. More importantly, we investigated the impact of interactions between tissue and developmental stage on the performance of candidate reference genes. Four algorithms, including geNorm, NormFinder, BestKeeper, and Delta Ct, were used to analyze the expression stability and RefFinder, a comprehensive software, provided the final recommendation. Based on previous research and our preliminary data, we hypothesized that internal references for spatio-temporal gene expression are different from the reference genes suited for individual factors. In G. uralensis, the top three most stable reference genes across different tissues were R3HDM2, CAC and TUB, while CAC, CYP and ABCC2 were most suited for different developmental stages. CAC is the only candidate recommended for both biotic factors, which is reflected in the stability ranking for the spatio (tissue)-temporal (developmental stage) interactions (CAC, R3HDM2 and DNAJ). Similarly, in G. inflata, COPS3, R3HDM2 and DREB were selected for tissues, while RAN, COPS3 and CS were recommended for developmental stages. For the tissue-developmental stage interactions, COPS3, DREB and ABCC2 were the most suited reference genes. In both species, only one of the top three candidates was shared between the individual factors and their interactions, specifically, CAC in G. uralensis and COPS3 in G. inflata, which supports our overarching hypothesis. In summary, spatio-temporal selection of reference genes not only lays the foundation for functional genomics research in Glycyrrhiza, but also facilitates these traditional medicinal herbs to reach/maximize their pharmaceutical potential.


2021 ◽  
Author(s):  
Carolina S. B. Dutra ◽  
Elia Merzari

Abstract The study of coolant flow behavior in rod bundles is of relevance to the design of nuclear reactors. Although laminar and turbulent flows have been researched extensively, there are still gaps in understanding the process of laminar-turbulent transition. Such a process may involve the formation of a gap vortex street as the consequence of a related linear instability. In the present work, a parametric study was performed to analyze the spatially developing turbulence in a simplified geometry setting. The geometry includes two square arrayed rod bundle subchannels with periodic boundary conditions in the cross-section. The pitch-to-diameter ratios range from 1.05 to 1.20, and the length of the domain was selected to be 100 diameters. No-slip condition at the wall, and inlet-outlet configuration were employed. Then, to investigate the stability of the flow, the Reynolds number was varied from 250 to 3000. The simulations were carried out using the spectral-element code Nek5000, with a Direct Numerical Simulation (DNS) approach. Data were analyzed to examine this Spatio-temporal developing instability. In particular, we evaluate the location of onset and spatial growth of the instability.


Author(s):  
Wei Ge ◽  
Ning Yang ◽  
Wei Wang ◽  
Jinghai Li

The drag interaction between gas and solids not only acts as a driving force for solids in gas-solids flows but also plays as a major role in the dissipation of the energy due to drag losses. This leads to enormous complexities as these drag terms are highly non-linear and multiscale in nature because of the variations in solids spatio-temporal distribution. This chapter provides an overview of this important aspect of the hydrodynamic interactions between the gas and solids and the role of spatio-temporal heterogeneities on the quantification of this drag force. In particular, a model is presented which introduces a mesoscale description into two-fluid models for gas-solids flows. This description is formulated in terms of the stability of gas-solids suspension. The stability condition is, in turn, posed as a minimization problem where the competing factors are the energy consumption required to suspend and transport the solids and their gravitational potential energy. However, the lack of scale-separation leads to many uncertainties in quantifying mesoscale structures. The authors have incorporated this model into computational fluid dynamics (CFD) simulations which have shown improvements over traditional drag models. Fully resolved simulations, such as those mentioned in this chapter and the subject of a later chapter on Immersed Boundary Methods, can be used to obtain additional information about these mesoscale structures. This can be used to formulate better constitutive equations for continuum models.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Elsa Abs ◽  
Hélène Leman ◽  
Régis Ferrière

AbstractThe decomposition of soil organic matter (SOM) is a critical process in global terrestrial ecosystems. SOM decomposition is driven by micro-organisms that cooperate by secreting costly extracellular (exo-)enzymes. This raises a fundamental puzzle: the stability of microbial decomposition in spite of its evolutionary vulnerability to “cheaters”—mutant strains that reap the benefits of cooperation while paying a lower cost. Resolving this puzzle requires a multi-scale eco-evolutionary model that captures the spatio-temporal dynamics of molecule-molecule, molecule-cell, and cell-cell interactions. The analysis of such a model reveals local extinctions, microbial dispersal, and limited soil diffusivity as key factors of the evolutionary stability of microbial decomposition. At the scale of whole-ecosystem function, soil diffusivity influences the evolution of exo-enzyme production, which feeds back to the average SOM decomposition rate and stock. Microbial adaptive evolution may thus be an important factor in the response of soil carbon fluxes to global environmental change.


2000 ◽  
Vol 402 ◽  
pp. 89-107 ◽  
Author(s):  
P. MORESCO ◽  
J. J. HEALEY

In this work we analyse the stability properties of the flow over an isothermal, semi-infinite vertical plate, placed at zero incidence to an otherwise uniform stream at a different temperature. Near the leading edge the boundary layer resembles Blasius flow, but further downstream it approaches that of pure buoyancy-driven flow. A coordinate transformation that describes in a smooth way the evolution between these two limiting similarity states, where the viscous and buoyancy forces are respectively dominant, is used to calculate the basic flow. The stability of this flow has been investigated by making the parallel flow approximation, and using an accurate spectral method on the resulting stability equations. We show how the stability modes discussed by other authors can be followed continuously between the forced and free convection limits; in addition, new instability modes not previously reported in the literature have been found. A spatio–temporal stability analysis of these modes has been carried out to distinguish between absolute and convective instabilities. It seems that absolute instability can only occur when buoyancy forces are opposed to the free stream and when there is a region of reverse flow. Model profiles have been used in this latter case beyond the point of boundary layer separation to estimate the range of reverse flows that support absolute instability. Analysis of the Rayleigh equations for this problem suggests that the absolute instability has an inviscid origin.


2004 ◽  
Vol 12 (04) ◽  
pp. 475-499 ◽  
Author(s):  
AHLEM ALIA ◽  
HAKIM DJELOUAH ◽  
NOUREDDINE BOUAOUA

In this paper, FD formulations in cylindrical coordinates are used to model the field radiated, by a circular source, in fluid and solid media. The stability of the used schemes is controlled by a proper choice of time and space steps. Absorbing boundary conditions are introduced to satisfy the assumption of a propagation in a half space medium. In order to minimize the CPU time, calculations are limited for regions disturbed by the propagating ultrasonic pulse then the calculus zone is incremented. Some numerical results are presented to illustrate the effect of the medium nature, source vibration profiles and eventually the presence of targets in the acoustic field. A spatio-temporal description of the diffraction phenomena is given. The radiated field is interpreted in terms of plane and edge waves. For solid media, this interpretation allows the determination of the arrival times which are compared with those numerically predicted. Numerical results corresponding to fluid media are compared to those obtained by the Impulse Response Method. The good agreement obtained justifies the choice of the FDM for the modeling of the wave propagation problems.


Sign in / Sign up

Export Citation Format

Share Document