scholarly journals Entropy function from toric geometry

2021 ◽  
pp. 115571
Author(s):  
Antonio Amariti ◽  
Ivan Garozzo ◽  
Gabriele Lo Monaco
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gianluca Teza ◽  
Michele Caraglio ◽  
Attilio L. Stella

AbstractWe show how the Shannon entropy function can be used as a basis to set up complexity measures weighting the economic efficiency of countries and the specialization of products beyond bare diversification. This entropy function guarantees the existence of a fixed point which is rapidly reached by an iterative scheme converging to our self-consistent measures. Our approach naturally allows to decompose into inter-sectorial and intra-sectorial contributions the country competitivity measure if products are partitioned into larger categories. Besides outlining the technical features and advantages of the method, we describe a wide range of results arising from the analysis of the obtained rankings and we benchmark these observations against those established with other economical parameters. These comparisons allow to partition countries and products into various main typologies, with well-revealed characterizing features. Our methods have wide applicability to general problems of ranking in bipartite networks.


1987 ◽  
Vol 25 (1-3) ◽  
pp. 387-398 ◽  
Author(s):  
Tomas Bohr ◽  
David Rand

1999 ◽  
Vol 1999 (04) ◽  
pp. 012-012 ◽  
Author(s):  
Changhyun Ahn ◽  
Hoil Kim
Keyword(s):  

2005 ◽  
Vol 304 (1) ◽  
pp. 269-295 ◽  
Author(s):  
Joan Cerdà ◽  
Heribert Coll ◽  
Joaquim Martín

2018 ◽  
Vol 70 (2) ◽  
pp. 354-399 ◽  
Author(s):  
Christopher Manon

AbstractCuller and Vogtmann defined a simplicial spaceO(g), calledouter space, to study the outer automorphism group of the free groupFg. Using representation theoretic methods, we give an embedding ofO(g) into the analytification of X(Fg,SL2(ℂ)), theSL2(ℂ) character variety ofFg, reproving a result of Morgan and Shalen. Then we show that every pointvcontained in a maximal cell ofO(g) defines a flat degeneration of X(Fg,SL2(ℂ)) to a toric varietyX(PΓ). We relate X(Fg,SL2(ℂ)) andX(v) topologically by showing that there is a surjective, continuous, proper map Ξv:X(Fg,SL2(ℂ)) →X(v). We then show that this map is a symplectomorphism on a dense open subset of X(Fg, SL2(ℂ)) with respect to natural symplectic structures on X(Fg, SL2(ℂ)) andX(v). In this way, we construct an integrable Hamiltonian system in X(Fg, SL2(ℂ)) for each point in a maximal cell ofO(g), and we show that eachvdefines a topological decomposition of X(Fg, SL2(ℂ)) derived from the decomposition ofX(PΓ) by its torus orbits. Finally, we show that the valuations coming from the closure of a maximal cell inO(g) all arise as divisorial valuations built from an associated projective compactification of X(Fg, SL2(ℂ)).


2011 ◽  
Vol 32 (4) ◽  
pp. 1400-1417 ◽  
Author(s):  
YUAN LI ◽  
ERCAI CHEN ◽  
WEN-CHIAO CHENG

AbstractBurguet [A direct proof of the tail variational principle and its extension to maps. Ergod. Th. & Dynam. Sys.29 (2009), 357–369] presented a direct proof of the variational principle of tail entropy and extended Downarowicz’s results to a non-invertible case. This paper defines and discusses tail pressure, which is an extension of tail entropy for continuous transformations. This study reveals analogs of many known results of topological pressure. Specifically, a variational principle is provided and some applications of tail pressure, such as the investigation of invariant measures and equilibrium states, are also obtained.


Sign in / Sign up

Export Citation Format

Share Document