Structural health monitoring of towers and blades for floating offshore wind turbines using operational modal analysis and modal properties with numerical-sensor signals

2019 ◽  
Vol 188 ◽  
pp. 106226 ◽  
Author(s):  
Hyoung-Chul Kim ◽  
Moo-Hyun Kim ◽  
Do-Eun Choe
Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1835 ◽  
Author(s):  
Yolanda Vidal ◽  
Gabriela Aquino ◽  
Francesc Pozo ◽  
José Eligio Moisés Gutiérrez-Arias

Structural health monitoring for offshore wind turbines is imperative. Offshore wind energy is progressively attained at greater water depths, beyond 30 m, where jacket foundations are presently the best solution to cope with the harsh environment (extreme sites with poor soil conditions). Structural integrity is of key importance in these underwater structures. In this work, a methodology for the diagnosis of structural damage in jacket-type foundations is stated. The method is based on the criterion that any damage or structural change produces variations in the vibrational response of the structure. Most studies in this area are, primarily, focused on the case of measurable input excitation and vibration response signals. Nevertheless, in this paper it is assumed that the only available excitation, the wind, is not measurable. Therefore, using vibration-response-only accelerometer information, a data-driven approach is developed following the next steps: (i) the wind is simulated as a Gaussian white noise and the accelerometer data are collected; (ii) the data are pre-processed using group-reshape and column-scaling; (iii) principal component analysis is used for both linear dimensionality reduction and feature extraction; finally, (iv) two different machine-learning algorithms, k nearest neighbor (k-NN) and quadratic-kernel support vector machine (SVM), are tested as classifiers. The overall accuracy is estimated by 5-fold cross-validation. The proposed approach is experimentally validated in a laboratory small-scale structure. The results manifest the reliability of the stated fault diagnosis method being the best performance given by the SVM classifier.


2021 ◽  
Author(s):  
Mees van Vondelen ◽  
Sachin T. Navalkar ◽  
Alexandros Iliopoulos ◽  
Daan van der Hoek ◽  
Jan-Willem van Wingerden

Abstract. To increase the contribution of offshore wind energy to the global energy mix in an economically sustainable manner, it is required to reduce the costs associated with the production and operation of offshore wind turbines (OWTs). One of the largest uncertainties and sources of design conservatism for OWTs is the determination of the global damping level of the OWT. Estimation of OWT damping based on field measurement data has hence been subject to considerable research attention and is based on the use of (preferably operational) vibration data obtained from sensors mounted on the structure. As such, it is an output-only problem and can be addressed using state-of-the-art Operational Modal Analysis (OMA) techniques, reviewed in this paper. The evolution of classical time- and frequency-domain OMA techniques has been reviewed; however, literature shows that the OWT vibration data is often contaminated by rotor speed harmonics of significantly high energy located close to structural modes, which impede classical damping identification. Recent advances in OMA algorithms for known or unknown harmonic frequencies can be used to improve identification in such cases. Further, the transmissibility family of OMA algorithms is purported to be insensitive to harmonics. Based on this review, a classification of OMA algorithms is made according to a set of novel suitability criteria, such that the OMA technique appropriate to the specific OWT vibration measurement setup may be selected. Finally, based on this literature review, it has been identified that the most attractive future path for OWT damping estimation lies in the combination of uncertain non-stationary harmonic frequency measurements with statistical harmonic isolation to enhance classical OMA techniques, orthogonal removal of harmonics from measured vibration signals, and in the robustification of transmissibility-based techniques.


2014 ◽  
Vol 13 (6) ◽  
pp. 644-659 ◽  
Author(s):  
Christof Devriendt ◽  
Filipe Magalhães ◽  
Wout Weijtjens ◽  
Gert De Sitter ◽  
Álvaro Cunha ◽  
...  

This article will present and discuss the approach and the first results of a long-term dynamic monitoring campaign on an offshore wind turbine in the Belgian North Sea. It focuses on the vibration levels and modal parameters of the fundamental modes of the support structure. These parameters are crucial to minimize the operation and maintenance costs and to extend the lifetime of offshore wind turbine structure and mechanical systems. In order to perform a proper continuous monitoring during operation, a fast and reliable solution, applicable on an industrial scale, has been developed. It will be shown that the use of appropriate vibration measurement equipment together with state-of-the art operational modal analysis techniques can provide accurate estimates of natural frequencies, damping ratios, and mode shapes of offshore wind turbines. The identification methods have been automated and their reliability has been improved, so that the system can track small changes in the dynamic behavior of offshore wind turbines. The advanced modal analysis tools used in this application include the poly-reference least squares complex frequency-domain estimator, commercially known as PolyMAX, and the covariance-driven stochastic subspace identification method. The implemented processing strategy will be demonstrated on data continuously collected during 2 weeks, while the wind turbine was idling or parked.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Bruna Nabuco ◽  
Marius Tarpø ◽  
Ulf T. Tygesen ◽  
Rune Brincker

Fatigue life assessment currently recommended by offshore standards is associated with a large number of uncertainties mainly related to the environmental loads and the numerical model. Recently, for economic reasons, the need for extending the lifetime of existing offshore structures led to the necessity of developing more accurate and realistic predicting models so that damage detection and maintenance can be optimized. This paper proposes the implementation of Structural Health Monitoring Systems in order to extract modal properties—such as mode shapes, natural frequencies, and damping ratios—throughout Operational Modal Analysis (OMA), which is the engineering field that studies the modal properties of systems under ambient vibrations or normal operating conditions. The identified modal properties of the structural system are the fundamental information to update a finite element model by means of an expansion technique. Then, the virtual sensing technique—modal expansion—is used to estimate the stress in the entire structure. Though existing models depend on the load estimation, the model based on OMA-assisted virtual sensing depends on the measured responses and assumes that the loads act as random vibrations. A case study using data from a real offshore structure is presented based on measurements recorded during normal operation conditions of an offshore tripod jacket. From strains estimated using OMA and virtual sensing, fatigue stresses are predicted and verified by applying the concept of equivalent stress range. Both estimated and measured strains are given as input data to evaluate the equivalent stress range and compared with each other. Based on this study, structural health monitoring estimates the fatigue stresses with high precision. As conclusion, this study describes how the fatigue can be assessed based on a more accurate value of stress and less uncertainties, which may allow extending the fatigue life of offshore platforms.


Sign in / Sign up

Export Citation Format

Share Document