scholarly journals Exploring energy grid resilience: The impact of data, prosumer awareness, and action

Patterns ◽  
2021 ◽  
Vol 2 (6) ◽  
pp. 100258
Author(s):  
Rolf Egert ◽  
Jörg Daubert ◽  
Stephen Marsh ◽  
Max Mühlhäuser
Keyword(s):  
Author(s):  
Hasan Masrur ◽  
Kaisar R. Khan ◽  
Waleed Abumelha ◽  
Tomonobu Senjyu

AbstractA comprehensive theoretical investigation validated by the measurement is necessary to assess the impact of a microgrid on the electric distribution system. Some key parameters worth investigating are- enhancing economy, reliability, quality, and resiliency of a microgrid. Considering this necessity, a study of energy delivery system in a microgrid and its financial feasibility to integrate into the energy infrastructure has been presented in this paper. A campus microgrid with energy-efficient combined heat and power (CHP) natural gas-fired microturbine and photovoltaic generation has been used as a testbed to evaluate the efficiency of the power delivery. With distributed control and communication capability, this microgrid can be considered as a building block of smart grid that facilitates the inclusion of renewable and energy-efficient distributed generation. Simulation work has been performed to study the economic feasibility to integrate such microgrid into the energy grid. Several cases of remote microgrid operation have been studied to compare the best possible solution.


i-com ◽  
2021 ◽  
Vol 20 (2) ◽  
pp. 161-175
Author(s):  
Rolf Egert ◽  
Nina Gerber ◽  
Jasmin Haunschild ◽  
Philipp Kuehn ◽  
Verena Zimmermann

Abstract Smart cities aim at improving efficiency while providing safety and security by merging conventional infrastructures with information and communication technology. One strategy for mitigating hazardous situations and improving the overall resilience of the system is to involve citizens. For instance, smart grids involve prosumers—capable of producing and consuming electricity—who can adjust their electricity profile dynamically (i. e., decrease or increase electricity consumption), or use their local production to supply electricity to the grid. This mitigates the impact of peak consumption periods on the grid and makes it easier for operators to control the grid. This involvement of prosumers is accompanied by numerous socio-technical challenges, including motivating citizens to contribute by adjusting their electricity consumption to the requirements of the energy grid. Towards this end, this work investigates motivational strategies and tools, including nudging, persuasive technologies, and incentives, that can be leveraged to increase the motivation of citizens. We discuss long-term and side effects and ethical and privacy considerations, before portraying bug bounty programs, gamification and apps as technologies and strategies to communicate the motivational strategies to citizens.


2014 ◽  
Vol 124 ◽  
pp. 94-116 ◽  
Author(s):  
Michele De Gennaro ◽  
Elena Paffumi ◽  
Harald Scholz ◽  
Giorgio Martini

1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


1997 ◽  
Vol 161 ◽  
pp. 189-195
Author(s):  
Cesare Guaita ◽  
Roberto Crippa ◽  
Federico Manzini

AbstractA large amount of CO has been detected above many SL9/Jupiter impacts. This gas was never detected before the collision. So, in our opinion, CO was released from a parent compound during the collision. We identify this compound as POM (polyoxymethylene), a formaldehyde (HCHO) polymer that, when suddenly heated, reformes monomeric HCHO. At temperatures higher than 1200°K HCHO cannot exist in molecular form and the most probable result of its decomposition is the formation of CO. At lower temperatures, HCHO can react with NH3 and/or HCN to form high UV-absorbing polymeric material. In our opinion, this kind of material has also to be taken in to account to explain the complex evolution of some SL9 impacts that we observed in CCD images taken with a blue filter.


1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


Author(s):  
Lucien F. Trueb

Crushed and statically compressed Madagascar graphite that was explosively shocked at 425 kb by means of a planar flyer-plate is characterized by a black zone extending for 2 to 3 nun below the impact plane of the driver. Beyond this point, the material assumes the normal gray color of graphite. The thickness of the black zone is identical with the distance taken by the relaxation wave to overtake the compression wave.The main mechanical characteristic of the black material is its great hardness; steel scalpels and razor blades are readily blunted during attempts to cut it. An average microhardness value of 95-3 DPHN was obtained with a 10 kg load. This figure is a minimum because the indentations were usually cracked; 14.8 DPHN was measured in the gray zone.


Author(s):  
Sarah A. Luse

In the mid-nineteenth century Virchow revolutionized pathology by introduction of the concept of “cellular pathology”. Today, a century later, this term has increasing significance in health and disease. We now are in the beginning of a new era in pathology, one which might well be termed “organelle pathology” or “subcellular pathology”. The impact of lysosomal diseases on clinical medicine exemplifies this role of pathology of organelles in elucidation of disease today.Another aspect of cell organelles of prime importance is their pathologic alteration by drugs, toxins, hormones and malnutrition. The sensitivity of cell organelles to minute alterations in their environment offers an accurate evaluation of the site of action of drugs in the study of both function and toxicity. Examples of mitochondrial lesions include the effect of DDD on the adrenal cortex, riboflavin deficiency on liver cells, elevated blood ammonia on the neuron and some 8-aminoquinolines on myocardium.


Sign in / Sign up

Export Citation Format

Share Document