Alkyl polyglucosides for potential application in oil recovery process: Adsorption behavior in sandstones under high temperature and salinity

2020 ◽  
Vol 189 ◽  
pp. 107057 ◽  
Author(s):  
Peng Wei ◽  
Jintao Li ◽  
Yahong Xie ◽  
Xueli Huang ◽  
Lin Sun
Author(s):  
Jan P. van Ravenswaay ◽  
Jacques Holtzhausen ◽  
Jaco van der Merwe ◽  
Kobus Olivier ◽  
Riaan du Bruyn ◽  
...  

The Next Generation Nuclear Plant (NGNP) Project is a US-based initiative led by Idaho National Laboratories to demonstrate the viability of using High Temperature Gas-Cooled Reactor (HTGR) technology for the production of high temperature steam and/or heat for applications such as heavy oil recovery, process steam/cogeneration and hydrogen production. A key part of the NGNP Project is the development of a Component Test Facility (CTF) that will support the development of high temperature gas thermal-hydraulic technologies as applied in heat transport and heat transfer applications in HTGRs. These applications include, but are not limited to, primary and secondary coolants, direct cycle power conversion, co-generation, intermediate, secondary and tertiary heat transfer, demonstration of processes requiring high temperatures as well as testing of NGNP specific control, maintenance and inspection philosophies and techniques. The feasibility of the envisioned CTF as a development and testing platform for components and systems in support of the NGNP was evaluated. For components and systems to be integrated into the NGNP full scale or at least representative size tests need to be conducted at NGNP representative conditions, with regards to pressure, flow rate and temperature. Typical components to be tested in the CTF include heat exchangers, steam generators, circulators, valves and gas piping. The Design Data Needs (DDNs), Technology Readiness Levels (TRLs) as well as Design Readiness Levels (DRLs) prepared in the pre-conceptual design of the NGNP Project and the NGNP lifecycle requirements were used as inputs to establish the CTF Functional and Operating Requirements (F&ORs). The existing South African PBMR test facilities were evaluated to determine their current applicability or possible modifications to meet the F&ORs of the CTF. Three concepts were proposed and initial energy balances and layouts were developed. This paper will present the results of this CTF study and the ongoing efforts to establish the CTF.


2020 ◽  
Vol 12 (21) ◽  
pp. 24201-24208
Author(s):  
Peisong Liu ◽  
Xiaohong Li ◽  
Huanhuan Yu ◽  
Liyong Niu ◽  
Laigui Yu ◽  
...  

Geophysics ◽  
1987 ◽  
Vol 52 (11) ◽  
pp. 1457-1465 ◽  
Author(s):  
E. F. Laine

Cross‐borehole seismic velocity and high‐frequency electromagnetic (EM) attenuation data were obtained to construct tomographic images of heavy oil sands in a steam‐flood environment. First‐arrival seismic data were used to construct a tomographic color image of a 10 m by 8 m vertical plane between the two boreholes. Two high‐frequency (17 and 15 MHz) EM transmission tomographs were constructed of a 20 m by 8 m vertical plane. The velocity tomograph clearly shows a shale layer with oil sands above it and below it. The EM tomographs show a more complex geology of oil sands with shale inclusions. The deepest EM tomograph shows the upper part of an active steam zone and suggests steam chanelling just below the shale layer. These results show the detailed structure of the entire plane between boreholes and may provide a better means to understand the process for in situ heavy oil recovery in a steam‐flood environment.


2016 ◽  
Vol 7 (24) ◽  
pp. 4004-4015 ◽  
Author(s):  
Sanjib Banerjee ◽  
Thibaut Soulestin ◽  
Yogesh Patil ◽  
Vincent Ladmiral ◽  
Bruno Ameduri

–COOH functionalized poly(vinylidene fluoride) prepared using water-based non-fluorinated solvents displays tunable wettability suitable for potential application in coating, oil recovery and water purification.


Sign in / Sign up

Export Citation Format

Share Document