The influence of density ratio on the primary atomization of a turbulent liquid jet in crossflow

2011 ◽  
Vol 33 (2) ◽  
pp. 2079-2088 ◽  
Author(s):  
M. Herrmann
Author(s):  
Charles R. Clark ◽  
Michael E. Tonarely ◽  
Jonathan Reyes ◽  
Kareem A. Ahmed
Keyword(s):  

Author(s):  
Feng Xiao ◽  
Mehriar Dianat ◽  
James J. McGuirk

A robust two-phase flow LES methodology is described, validated and applied to simulate primary breakup of a liquid jet injected into an airstream in either co-flow or cross-flow configuration. A Coupled Level Set and Volume of Fluid method is implemented for accurate capture of interface dynamics. Based on the local Level Set value, fluid density and viscosity fields are treated discontinuously across the interface. In order to cope with high density ratio, an extrapolated liquid velocity field is created and used for discretisation in the vicinity of the interface. Simulations of liquid jets discharged into higher speed airstreams with non-turbulent boundary conditions reveals the presence of regular surface waves. In practical configurations, both air and liquid flows are, however, likely to be turbulent. To account for inflowing turbulent eddies on the liquid jet interface primary breakup requires a methodology for creating physically correlated unsteady LES boundary conditions, which match experimental data as far as possible. The Rescaling/Recycling Method is implemented here to generate realistic turbulent inflows. It is found that liquid rather than gaseous eddies determine the initial interface shape, and the downstream turbulent liquid jet disintegrates much more chaotically than the non-turbulent one. When appropriate turbulent inflows are specified, the liquid jet behaviour in both co-flow and cross-flow configurations is correctly predicted by the current LES methodology, demonstrating its robustness and accuracy in dealing with high liquid/gas density ratio two-phase systems.


2019 ◽  
Author(s):  
Wilmer Flores ◽  
Otero Michelle ◽  
Kareem A. Ahmed

1998 ◽  
Vol 120 (2) ◽  
pp. 327-336 ◽  
Author(s):  
K. Thole ◽  
M. Gritsch ◽  
A. Schulz ◽  
S. Wittig

One viable option to improve cooling methods used for gas turbine blades is to optimize the geometry of the film-cooling hole. To optimize that geometry, effects of the hole geometry on the complex jet-in-crossflow interaction need to be understood. This paper presents a comparison of detailed flowfield measurements for three different single, scaled-up hole geometries, all at a blowing ratio and density ratio of unity. The hole geometries include a round hole, a hole with a laterally expanded exit, and a hole with a forward-laterally expanded exit. In addition to the flowfield measurements for expanded cooling hole geometries being unique to the literature, the testing facility used for these measurements was also unique in that both the external mainstream Mach number (Ma∞ = 0.25) and internal coolant supply Mach number (Mac = 0.3) were nearly matched. Results show that by expanding the exit of the cooling holes, both the penetration of the cooling jet and the intense shear regions are significantly reduced relative to a round hole. Although the peak turbulence level for all three hole geometries was nominally the same, the source of that turbulence was different. The peak turbulence level for both expanded holes was located at the exit of the cooling hole resulting from the expansion angle being too large. The peak turbulence level for the round hole was located downstream of the hole exit where the velocity gradients were very large.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Mohammad A. Hossain ◽  
Robin Prenter ◽  
Ryan K. Lundgreen ◽  
Ali Ameri ◽  
James W. Gregory ◽  
...  

A companion experimental and numerical study was conducted for the performance of a row of five sweeping jet (SJ) film cooling holes consisting of conventional curved fluidic oscillators with an aspect ratio (AR) of unity and a hole spacing of P/D = 8.5. Adiabatic film effectiveness (η), thermal field (θ), convective heat transfer coefficient (h), and discharge coefficient (CD) were measured at two different freestream turbulence levels (Tu = 0.4% and 10.1%) and four blowing ratios (M = 0.98, 1.97, 2.94, and 3.96) at a density ratio of 1.04 and hole Reynolds number of ReD = 2800. Adiabatic film effectiveness and thermal field data were also acquired for a baseline 777-shaped hole. The SJ film cooling hole showed significant improvement in cooling effectiveness in the lateral direction due to the sweeping action of the fluidic oscillator. An unsteady Reynolds-averaged Navier–Stokes (URANS) simulation was performed to evaluate the flow field at the exit of the hole. Time-resolved flow fields revealed two alternating streamwise vortices at all blowing ratios. The sense of rotation of these alternating vortices is opposite to the traditional counter-rotating vortex pair (CRVP) found in a “jet in crossflow” and serves to spread the film coolant laterally.


Author(s):  
K. Thole ◽  
M. Gritsch ◽  
A. Schulz ◽  
S. Wittig

One viable option to improve cooling methods used for gas turbine blades is to optimize the geometry of the film-cooling hole. To optimize that geometry, effects of the hole geometry on the complex jet-in-crossflow interaction need to be understood. This paper presents a comparison of detailed flowfield measurements for three different single, scaled-up, hole geometries all at a blowing ratio and density ratio of unity. The hole geometries include a round hole, a hole with a laterally expanded exit, and a hole with a forward-laterally expanded exit. In addition to the flowfield measurements for expanded cooling hole geometries being unique to the literature, the testing facility used for these measurements was also unique in that both the external mainstream Mach number (Ma∞ = 0.25) and internal coolant supply Mach number (Mac = 0.3) were nearly matched. Results show that by expanding the exit of the cooling holes, the penetration of the cooling jet as well as the intense shear regions are significantly reduced relative to a round hole. Although the peak turbulence levels for all three hole geometries was nominally the same, the source of that turbulence was different. The peak turbulence level for both expanded holes was located at the exit of the cooling hole resulting from the expansion angle being too large. The peak turbulence level for the round hole was located downstream of the hole exit where the velocity gradients were very large.


Author(s):  
D. Scott Holloway ◽  
D. Keith Walters ◽  
James H. Leylek

This paper documents a computational investigation of the unsteady behavior of jet-in-crossflow applications. Improved prediction of fundamental physics is achieved by implementing a new unsteady, RANS-based turbulence model developed by the authors. Two test cases are examined that match experimental efforts previously documented in the open literature. One is the well-documented normal jet-in-crossflow, and the other is film cooling on the pressure side of a turbine blade. All simulations are three-dimensional, fully converged, and grid-independent. High-quality and high-density grids are constructed using multiple topologies and an unstructured, super-block approach to ensure that numerical viscosity is minimized. Computational domains include the passage, film hole, and coolant supply plenum. Results for the normal jet-in-crossflow are for a density ratio of 1 and velocity ratio of 0.5 and include streamwise velocity profiles and injected flow or “coolant” distribution. The Reynolds number based on the average jet exit velocity and jet diameter is 20,500. This represents a good test case since normal injection is known to exaggerate the key flow mechanisms seen in film-cooling applications. Results for the pressure side film-cooling case include coolant distribution and adiabatic effectiveness for a density and blowing ratio of 2. In addition to the in-house model that incorporates new unsteady physics, CFD simulations utilize standard, RANS-based turbulence models, such as the “realizable” k-ε model. The present study demonstrates the importance of unsteady physics in the prediction of jet-in-crossflow interactions and for film cooling flows that exhibit jet liftoff.


AIAA Journal ◽  
2019 ◽  
Vol 57 (10) ◽  
pp. 4577-4582 ◽  
Author(s):  
Anubhav Sinha

Sign in / Sign up

Export Citation Format

Share Document