scholarly journals FPGA based Real Time Human Hand Gesture Recognition System

2012 ◽  
Vol 6 ◽  
pp. 98-107 ◽  
Author(s):  
Amit Gupta ◽  
Vijay Kumar Sehrawat ◽  
Mamta Khosla
2021 ◽  
Vol 102 ◽  
pp. 04009
Author(s):  
Naoto Ageishi ◽  
Fukuchi Tomohide ◽  
Abderazek Ben Abdallah

Hand gestures are a kind of nonverbal communication in which visible bodily actions are used to communicate important messages. Recently, hand gesture recognition has received significant attention from the research community for various applications, including advanced driver assistance systems, prosthetic, and robotic control. Therefore, accurate and fast classification of hand gesture is required. In this research, we created a deep neural network as the first step to develop a real-time camera-only hand gesture recognition system without electroencephalogram (EEG) signals. We present the system software architecture in a fair amount of details. The proposed system was able to recognize hand signs with an accuracy of 97.31%.


Author(s):  
Joseph C. Tsai ◽  
Shih Ming Chang ◽  
Shwu Huey Yen ◽  
Kuan Ching Li ◽  
Yung Hui Chen ◽  
...  

2013 ◽  
Vol 8 (11) ◽  
pp. 185-193 ◽  
Author(s):  
Jiali Li ◽  
Lingxiang Zheng ◽  
Yuqi Chen ◽  
Yixiong Zhang ◽  
Peng Lu

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2321 ◽  
Author(s):  
Myoungseok Yu ◽  
Narae Kim ◽  
Yunho Jung ◽  
Seongjoo Lee

In this paper, a method to detect frames was described that can be used as hand gesture data when configuring a real-time hand gesture recognition system using continuous wave (CW) radar. Detecting valid frames raises accuracy which recognizes gestures. Therefore, it is essential to detect valid frames in the real-time hand gesture recognition system using CW radar. The conventional research on hand gesture recognition systems has not been conducted on detecting valid frames. We took the R-wave on electrocardiogram (ECG) detection as the conventional method. The detection probability of the conventional method was 85.04%. It has a low accuracy to use the hand gesture recognition system. The proposal consists of 2-stages to improve accuracy. We measured the performance of the detection method of hand gestures provided by the detection probability and the recognition probability. By comparing the performance of each detection method, we proposed an optimal detection method. The proposal detects valid frames with an accuracy of 96.88%, 11.84% higher than the accuracy of the conventional method. Also, the recognition probability of the proposal method was 94.21%, which was 3.71% lower than the ideal method.


Sign in / Sign up

Export Citation Format

Share Document