scholarly journals Screening for lung cancer with low-dose CT scans

2013 ◽  
Vol 51 (4) ◽  
pp. 205-206 ◽  
Author(s):  
James R. Jett
Keyword(s):  
Low Dose ◽  
Ct Scans ◽  
2021 ◽  
Author(s):  
Babak Haghighi ◽  
Hannah Horng ◽  
Peter B Noël ◽  
Eric Cohen ◽  
Lauren Pantalone ◽  
...  

Abstract Rationale: High-throughput extraction of radiomic features from low-dose CT scans can characterize the heterogeneity of the lung parenchyma and potentially aid in identifying subpopulations that may have higher risk of lung diseases, such as COPD, and lung cancer due to inflammation or obstruction of the airways. We aim to determine the feasibility a lung radiomics phenotyping approach in a lung cancer screening cohort, while quantifying the effect of different CT reconstruction algorithms on phenotype robustness. Methods: We identified low-dose CT scans (n = 308) acquired with Siemens Healthineers scanners from patients who completed low-dose CT within our lung cancer screening program between 2015-2018 and had two different sets of image reconstructions kernel available (i.e., medium (I30f), sharp (I50f)) for the same acquisition. Following segmentation of the lung field, a total of 26 radiomic features were extracted from the entire 3D lung-field using a previously validated fully-automated lattice-based software pipeline, adapted for low-dose CT scans. The features extracted included gray-level histogram, co-occurrence, and run-length descriptors. Each feature was averaged for each scan within a range of lattice window sizes (W) ranging from 4-20mm. The extracted imaging features from both datasets were harmonized to correct for differences in image acquisition parameters. Subsequently, unsupervised hierarchal clustering was applied on the extracted features to identify distinct phenotypic patterns of the lung parenchyma, where consensus clustering was used to identify the optimal number of clusters (K = 2). Differences between? phenotypes for demographic and clinical covariates including sex, age, BMI, pack-years of smoking, Lung-RADS and cancer diagnosis were assessed for each phenotype cluster, and then compared across clusters for the two different CT reconstruction algorithms using the cluster entanglement metric, where a lower entanglement coefficient corresponds to good cluster alignment. Furthermore, an independent set of low-dose CT scans (n = 88) from patients with available pulmonary function data on lung obstruction were analyzed using the identified optimal clusters to assess associations to lung obstruction and validate the lung phenotyping paradigm. Results: Heatmaps generated by radiomic features identified two distinct lung parenchymal phenotype patterns across different feature extraction window sizes, for both reconstruction algorithms (P < 0.05 with K = 2). Associations of radiomic-based clusters with clinical covariates showed significant difference for BMI and pack-years of smoking (P < 0.05) for both reconstruction kernels. Radiomic phenotype patterns where similar across the two reconstructed kernels, specifically when smaller window sizes (W=4 and 8mm) were used for radiomic feature extraction, as deemed by their entanglement coefficient. Validation of clustering approaches using cluster mapping for the independent sample with lung obstruction also showed two statistically significant phenotypes (P < 0.05) with significant difference for BMI and smoking pack-years.ConclusionsRadiomic analysis can be used to characterize lung parenchymal phenotypes from low-dose CT scans, which appear reproducible for different reconstruction kernels. Further work should seek to evaluate the effect of additional CT acquisition parameters and validate these phenotypes in characterizing lung cancer screening populations, to potentially better stratify disease patterns and cancer risk.


2020 ◽  
Vol 17 (2) ◽  
Author(s):  
Feng Ao ◽  
Xueguo Liu ◽  
Mingzhu Liang ◽  
Jiebing Gao

Background: Breast cancer and lung cancer are the leading causes of cancer-related mortality in women. Computed tomography (CT) plays an important role in lung cancer examination but an unidentified role in breast examination. Objectives: To investigate the feasibility of breast composition categorization according to the fifth edition of Breast Imaging-Reporting and Data System (BI-RADS) atlas in low-dose CT screening. Patients and Methods: This was a cross-sectional study completed in The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China. We collected the imaging data of 57 women, who underwent low-dose chest CT scan and mammography within one week from 1st October 2013 to 31st March 2015. Two radiologists independently interpreted the mammograms and chest CT scans and classified the breast composition into categories a, b, c, and d. We also summarized the distribution of breast composition categories by collecting, observing, and classifying the chest CT scans from 1916 female examinees from 1st October 2013 to 31st March 2016. Results: Excellent agreement was observed between the two radiologists, using both low-dose CT scan (κ = 0.91) and mammography (κ = 0.86). Agreement between low-dose chest CT scan and mammography was moderate for radiologist A (κ = 0.50) and radiologist B (κ = 0.43). More breasts were classified in categories a and b on the chest CT scan compared to mammography according to both radiologist A (P < 0.01) and radiologist B (P < 0.01). The proportion of non-dense breast tissues (categories a & b) increased with advancing age, while the proportion of dense breast tissues (categories c & d) decreased (P < 0.05). With advancing age, the probability of non-dense breasts increased, while the probability of dense breasts decreased. Conclusions: Based on the findings, it is feasible to categorize breast composition using low-dose chest CT. In the older age group, the probability of non-dense breasts increased.


2021 ◽  
Vol 3 (5) ◽  
pp. e200160
Author(s):  
Colin Jacobs ◽  
Anton Schreuder ◽  
Sarah J. van Riel ◽  
Ernst Th. Scholten ◽  
Rianne Wittenberg ◽  
...  

Thorax ◽  
2021 ◽  
pp. thoraxjnl-2020-215107
Author(s):  
Yeon Wook Kim ◽  
Byoung Soo Kwon ◽  
Sung Yoon Lim ◽  
Yeon Joo Lee ◽  
Jong Sun Park ◽  
...  

BackgroundLimited data are available regarding the management of subsolid nodules detected on lung cancer screening with low-dose CT (LDCT). We aimed to determine the characteristics of screen-detected subsolid nodules, and to evaluate the probability of lung cancer and the clinical course of subsolid nodules detected at baseline and during follow-up screening.MethodsWe evaluated 50 132 asymptomatic adults (22 631 never-smokers and 27 501 ever-smokers) who underwent LDCT screening for lung cancer between May 2003 and June 2019 at a tertiary centre in South Korea. The incidence, characteristics and clinical outcomes of the baseline and new screen-detected subsolid nodules were determined.ResultsA total of 6725 subsolid nodules (5116 pure ground glass opacity nodules and 1609 part-solid nodules) were detected in 4545 participants (1484 new subsolid nodules detected in 937 (1.9%) participants; the overall incidence of subsolid nodules: 10.7% in never-smokers and 7.7% in ever-smokers, p<0.001). Among 4918 subsolid nodules that underwent follow-up with CT scans (the mean number of CT scans, including the baseline LDCT scan: 4.6), 2116 nodules (30.0% of baseline subsolid nodules and 78.9% of new subsolid nodules) resolved spontaneously. Among 293 biopsied subsolid nodules, 227 (77.5%) nodules were diagnosed as lung cancer, of which 226 (99.6%) were adenocarcinomas. No significant difference was observed in pathological invasiveness or the initial stage between the baseline and new cancerous subsolid nodules. Multivariable analyses revealed that new detection at follow-up screening was significantly associated with a lower probability of lung cancer (OR 0.26, 95% CI 0.14 to 0.49) and overall growth (OR 0.39, 95% CI 0.26 to 0.59), but with a higher probability of resolution (OR 6.30, 95% CI 5.09 to 7.81).ConclusionsLDCT screening led to a considerably high rate of subsolid nodule detection, particularly in never-smokers. Compared with the baseline subsolid nodules, the new subsolid nodules were associated with a lower probability of lung cancer and higher probability of spontaneous resolution, indicating their more inflammatory nature. Less aggressive follow-up may be allowed for new subsolid nodules, particularly in screening programmes for Asian populations.


CHEST Journal ◽  
2016 ◽  
Vol 150 (4) ◽  
pp. 658A ◽  
Author(s):  
Lillie Morgan ◽  
Michal Reid ◽  
Humberto Choi ◽  
Peter Mazzone

2013 ◽  
Vol 1 (4) ◽  
pp. 249-256
Author(s):  
Rolando Sanchez Sanchez ◽  
Nichole T. Tanner ◽  
Nasar A. Siddiqi ◽  
Gerard A. Silvestri

Sign in / Sign up

Export Citation Format

Share Document