Effect of melatonin on DNA damage of bovine cumulus cells during in vitro maturation (IVM) and on in vitro embryo development

2012 ◽  
Vol 92 (1) ◽  
pp. 124-127 ◽  
Author(s):  
L. Takada ◽  
A. Martins Junior ◽  
G.Z. Mingoti ◽  
J.C.C. Balieiro ◽  
J. Cipolla-Neto ◽  
...  
2018 ◽  
Vol 58 (11) ◽  
pp. 2021 ◽  
Author(s):  
B. R. Abdel-Halim ◽  
Nermeen A. Helmy

The objectives of the current study were to evaluate the effects of supplemental nano-selenium (NSe) and nano-zinc oxide (NZn-O) particles during in vitro maturation (IVM) on DNA damage of cumulus cells, glutathione (GSH) concentration in bovine oocytes, subsequent embryo development and re-expansion rate of vitrified warmed blastocysts. The current study was conducted on bovine ovaries obtained from a local abattoir and transported to the laboratory in sterile phosphate buffer saline with antibiotics at 37°C, within 1 h after slaughter. Ovaries were pooled, regardless of stage of the oestrous cycle of the donor. Only cumulus-intact complexes with evenly granulated cytoplasm were selected for IVM. Experimental design included the following: Experiment 1 studied the effect of addition of 1.0 µg/mL NSe or NZn-O to IVM medium on DNA damage of cumulus cells; Experiment 2 evaluated the effects of NSe or NZn-O on intracellular glutathione in oocytes and cumulus cells; in Experiment 3, the development of oocytes matured in IVM medium supplemented with 1.0 µg/mL NSe or NZn-O was investigated; and in Experiment 4, the effects of adding 1.0 µg/mL NSe and NZn-O to in vitro fertilisation media on vitrified oocytes and embryos were investigated. The DNA damage in cumulus cells decreased with supplemental NSe and NZn-O at concentration of 1 µg/mL in the IVM medium (180.2 ± 21.4, 55.8 ± 4.3 and 56.6 ± 3.9 for the control and NSe and NZn-O groups respectively). Total GSH concentrations increased following supplementation with 1 µg/mL NSe and 1 µg/mL NZn-O, compared with the control group. Re-expansion rate of vitrified warmed blastocysts in experimental media containing NSe and NZn-O with ethylene glycol was higher than that of the control. In conclusion, providing NSe and NZn-O during oocyte maturation significantly increased both intracellular GSH concentration and DNA integrity of cumulus cells. Optimal embryo development was partially dependent on the presence of NSe and NZn-O during IVM. NSe and NZn-O during oocyte maturation act as a good cryoprotective agents of vitrified, warmed blastocysts.


2011 ◽  
Vol 23 (1) ◽  
pp. 211
Author(s):  
K. R. Babu ◽  
R. Sharma ◽  
K. P. Singh ◽  
A. George ◽  
M. S. Chauhan ◽  
...  

Ovarian nitric oxide (NO) and that produced within the oocytes and embryos have been reported to play important roles in oocyte meiotic maturation and embryo development. Production of NO is catalyzed by NO synthase (NOS), which exists in 3 isoforms, the constitutive endothelial (eNOS) and neuronal (nNOS) isoforms and the inducible (iNOS) isoform. We have previously shown that low concentrations of NO stimulate and high concentrations inhibit embryo development, and that endogenous NO produced by iNOS is necessary for optimal embryo development in the buffalo. The present study was aimed at localizing different isoforms of NOS and examining their relative mRNA abundance in buffalo oocytes and embryos. Oocytes from slaughterhouse ovaries were subjected to in vitro maturation in 100-μL droplets (10 to 15 oocytes/droplet) of in vitro maturation medium (TCM-199 + 10% FBS + 5 μg mL–1 of pFSH + 1 μg mL–1 of oestradiol-17β + 0.81 mM sodium pyruvate + 10% buffalo follicular fluid + 50 μg mL–1 of gentamicin) for 24 h in a CO2 incubator (5% CO2 in air) at 38.5°C. In vitro fertilization was carried out by incubating in vitro-matured oocytes with 2 to 4 million spermatozoa mL–1 for 18 h. The presumed zygotes were cultured on original beds of cumulus cells in in vitro culture medium (mCR2aa + 0.6% BSA + 10% FBS) for up to 8 days post-insemination. Immature and in vitro-matured oocytes and embryos at the 2-cell, 4-cell, 8- to 16-cell, morula, and blastocyst stages were examined for the presence of NOS isoforms by indirect immunofluorescence staining using epifluorescence microscopy and RT-PCR. Each experiment was repeated in triplicate, and data were analysed using one-way ANOVA, after arcsine transformation of percentage values. Expression of all 3 NOS isoforms was detected inside the cytoplasm, in all the stages of oocytes and embryos examined, by both immunofluorescence and RT-PCR. Abundance of the iNOS transcript was significantly higher (P ≤ 0.01) in the morula and blastocyst stages compared with that in immature and in vitro-matured oocytes and in embryos at the 2-cell, 4-cell, and 8- to 16-cell stages, indicating that its expression was up-regulated at the 8- to 16-cell stage. The expression of eNOS was significantly higher (P ≤ 0.05) in the immature and mature oocytes and in 8- to 16-cell stage embryos, morulae, and blastocysts than in the early-cleavage embryos at the 2- and 4-cell stages, indicating that it was down-regulated after fertilization and was up-regulated again at the 8- to 16-cell stage. Abundance of the nNOS transcript was not significantly different among all the stages of oocytes and embryos examined. These results demonstrate that different NOS isoforms are expressed in a dynamic manner during embryonic development in the buffalo. The role of an increase in expression of iNOS and eNOS at the 8- to 16-cell stage, at which a developmental block occurs in this species, needs to be examined.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Alma López ◽  
Miguel Betancourt ◽  
Yvonne Ducolomb ◽  
Juan José Rodríguez ◽  
Eduardo Casas ◽  
...  

Abstract Background The evaluation of the DNA damage generated in cumulus cells after mature cumulus-oocyte complexes vitrification can be considered as an indicator of oocyte quality since these cells play important roles in oocyte developmental competence. Therefore, the aim of this study was to determine if matured cumulus-oocyte complexes exposure to cryoprotectants (CPAs) or vitrification affects oocytes and cumulus cells viability, but also if DNA damage is generated in cumulus cells, affecting fertilization and embryo development. Results The DNA damage in cumulus cells was measured using the alkaline comet assay and expressed as Comet Tail Length (CTL) and Olive Tail Moment (OTM). Results demonstrate that oocyte exposure to CPAs or vitrification reduced oocyte (75.5 ± 3.69%, Toxicity; 66.7 ± 4.57%, Vitrification) and cumulus cells viability (32.7 ± 5.85%, Toxicity; 7.7 ± 2.21%, Vitrification) compared to control (95.5 ± 4.04%, oocytes; 89 ± 4.24%, cumulus cells). Also, significantly higher DNA damage expressed as OTM was generated in the cumulus cells after exposure to CPAs and vitrification (39 ± 17.41, 33.6 ± 16.69, respectively) compared to control (7.4 ± 4.22). In addition, fertilization and embryo development rates also decreased after exposure to CPAs (35.3 ± 16.65%, 22.6 ± 3.05%, respectively) and vitrification (32.3 ± 9.29%, 20 ± 1%, respectively). It was also found that fertilization and embryo development rates in granulose-intact oocytes were significantly higher compared to denuded oocytes in the control groups. However, a decline in embryo development to the blastocyst stage was observed after CPAs exposure (1.66 ± 0.57%) or vitrification (2 ± 1%) compared to control (22.3 ± 2.51%). This could be attributed to the reduction in both cell types viability, and the generation of DNA damage in the cumulus cells. Conclusion This study demonstrates that oocyte exposure to CPAs or vitrification reduced viability in oocytes and cumulus cells, and generated DNA damage in the cumulus cells, affecting fertilization and embryo development rates. These findings will allow to understand some of the mechanisms of oocyte damage after vitrification that compromise their developmental capacity, as well as the search for new vitrification strategies to increase fertilization and embryo development rates by preserving the integrity of the cumulus cells.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2512
Author(s):  
Daniela-Alejandra Medina-Chávez ◽  
Irene Sánchez-Ajofrín ◽  
Patricia Peris-Frau ◽  
Carolina Maside ◽  
Vidal Montoro ◽  
...  

To date, the underlying mechanisms by which cAMP modulators act during in vitro maturation to improve oocyte developmental competence are poorly understood. Here, we sought to fill this knowledge gap by evaluating the use of phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) and adenylyl cyclase activator forskolin during a culture period of 2 h before in vitro maturation (pre-IVM) on the nuclear and cytoplasmic maturation features in essential organelles, cumulus cells activity, and in vitro developmental potential of sheep oocytes. Results showed that pre-IVM treatment significantly decreased (p < 0.05) the DNA damage of mature oocytes (pre-IVM = 2.08% ± 3.51% vs. control = 20.58% ± 3.51%) and increased (p ≤ 0.05) expanded blastocyst rates compared to the control (from the total of oocytes: pre-IVM = 23.89% ± 1.47% vs. control = 18.22% ± 1.47%, and from the cleaved embryos: pre-IVM = 45.16% ± 1.73% vs. control = 32.88% ± 1.73%). Considering that oocytes are highly vulnerable to the accumulation of DNA damage because of exposure to in vitro culture conditions, our results suggest that the modulation of intra-oocyte cAMP levels with forskolin and IBMX before IVM might afford oocytes a more effective DNA repair mechanism to overcome damage obstacles and ultimately improve developmental competence. This previously unappreciated action of cAMP modulators could help to develop improved methods for assisted reproduction technologies in animal and clinical research.


2015 ◽  
Vol 27 (1) ◽  
pp. 203
Author(s):  
I. Lindgren ◽  
P. Humblot ◽  
D. Laskowski ◽  
Y. Sjunnesson

Dairy cow fertility has decreased during the last decades, and much evidence indicates that metabolic disorders are an important part of this decline. Insulin is a key factor in the metabolic challenge during the transition period that coincides with the oocyte maturation and may therefore have an impact on the early embryo development. The aim of this study was to test the effect of insulin during oocyte maturation on early embryo development by adding insulin during the oocyte maturation in vitro. In this study, abattoir-derived bovine ovaries were used and cumulus-oocyte complexes (n = 991) were in vitro matured for 22 h according to standard protocols. Insulin was added during maturation in vitro as follows: H (10 µg mL–1 of insulin), L (0.1 µg mL–1 of insulin), or Z (0 µg mL–1 of insulin). After maturation, oocytes were removed and fixed in paraformaldehyde before staining. Click-it TUNEL assay (Invitrogen, Stockholm, Sweden) was used for apoptotic staining and DRAQ5 (BioNordika, Stockholm, Sweden) for nuclear staining (n = 132). Cumulus-oocyte complexes were evaluated using laser scanning confocal microscope (Zeiss LSM 510, Zeiss, Oberkochen, Germany). Five levels of scans were used to assess oocyte maturation (MII stage) and apoptosis. Because of incomplete penetration of the TUNEL stain (3–5 layers of cumulus cells), only the outer 2 layers of the cumulus complex were investigated regarding apoptosis. Apoptotic index was calculated as apoptotic cells/total cells visualised. Remaining oocytes were fertilized and cultured in vitro until Day 8. Day 7 and Day 8 blastocyst formation was assessed as well as blastocyst stage and grade. Effect of insulin treatment on variables was analysed by ANOVA following arc sin √p transformation. Post-ANOVA comparisons between H+L group v. Z were performed by using the contrast option under GLM (Scheffé test). Results are presented as least squares means ± s.e. P-values ≤ 0.05 were considered as statistically significant. Insulin treatment during oocyte maturation in vitro had no significant effect on oocyte nuclear maturation or apoptotic index of the cumulus cells (Z: 0.052 ± 0.025, L: 0.039 ± 0.016, H: 0.077 ± 0.044, P > 0.05). No effect was seen on cleavage rates (Z: 0.85 ± 0.02, L: 0.85 ± 0.02, H: 0.89 ± 0.03, P > 0.05), but insulin treatment significantly decreased Day 7 rates from fertilized oocytes (Z: 0.19 ± 0.02, L: 0.14 ± 0.02, H: 0.12 ± 0.02, P < 0.05). This study also showed a significantly retarded developmental stage and decreased grade of blastocysts in insulin-treated groups taken together when compared with the control group (P < 0.05). In this study, no effect of insulin supplementation during in vitro maturation was seen on bovine oocyte maturation and apoptosis of cumulus cells, but blastocyst formation and development were negatively affected. Further studies are needed for understanding the relationship between the addition of insulin during maturation in vitro and impaired blastocyst formation. Insulin is a common supplement in the first phase of the first in vitro maturation medium for pig oocytes and is believed to have a beneficial effect on this species.Funding was received from Stiftelsen Nils Lagerlöfs Fond H12–0051-NLA.


2021 ◽  
Author(s):  
Alma López ◽  
Miguel Betancourt ◽  
Yvonne Ducolomb ◽  
Juan José Rodríguez ◽  
Eduardo Casas ◽  
...  

Abstract Oocyte vitrification has become an important tool for the improvement of assisted reproduction in humans and other mammalian species. The toxicity and use of high cryoprotectants concentrations have been a limiting factor for cryopreservation success. The evaluation of the DNA damage generated in cumulus cells after mature cumulus-oocyte complexes vitrification can be considered as an indicator of oocyte quality since these cells play important roles in oocyte developmental competence. Alterations produced in these cells could compromise oocyte maturation, fertilization, and embryo development. Therefore, the aim of this study was to determine if matured cumulus-oocyte complexes exposure to cryoprotectants or vitrification affects both oocytes and cumulus cells viability, but also if DNA damage is generated in cumulus cells, affecting fertilization and embryo development. The DNA damage in cumulus cells was measured using the alkaline comet assay and expressed as Comet Tail Length and Olive Tail Moment. Results demonstrate that oocyte exposure to cryoprotectants or vitrification reduced oocyte and cumulus cells viability compared to control. Also, significantly higher DNA damage was generated in the cumulus cells after exposure to cryoprotectants and vitrification compared to control. In addition, fertilization and embryo development rates also decreased after exposure to cryoprotectants and vitrification. It was also found that fertilization and embryo development rates in granulose-intact oocytes were significantly higher compared to denuded oocytes in the control groups. However, a decline in oocyte fertilization and embryo development to the blastocyst stage was observed after cryoprotectants exposure or vitrification. This could be attributed to the reduction in both cell types viability, and the generation of DNA damage in the cumulus cells. These findings will allow to understand some of the mechanisms of oocyte damage after vitrification, and the search for new vitrification strategies to increase fertilization and embryo development rates.


Author(s):  
Tulay Irez ◽  
Sinem Ercan Dogan ◽  
Enver Ciraci ◽  
Saadet Busra Aksoyer ◽  
Muhammet Sait Toprak ◽  
...  

<p><strong>OBJECTIVE:</strong> In this study, we aimed to investigate the role of the cumulus cell’s apoptosis parameter in the maturation of immature rescue oocytes. </p><p><strong>STUDY DESIGN:</strong> In this experimental study, donated immature germinal vesicle oocytes were cultured for, in vitro maturation, embryo development in matured germinal vesicle oocytes were compared with apoptotic properties of cumulus cells. </p><p><strong>RESULTS:</strong> In all of the immature oocytes after oocyte in vitro maturation, the maturation rate has been observed as 56.1% and 2PN rate as 63.0%. Afterin vitro maturation of germinal vesicle oocytes, there was no difference in apoptosis rates of the cumulus cells between mature and immature oocytes (p&gt; 0.05). The ratio of 2PN in matured germinal vesicle oocytes showing embryo development was 35.4%. A positive correlation was found between luteinizing hormone values on day 3 and E2 values during HCG days during oocyte maturation and embryo development (p=0.021, p=0.020). In addition, it has been observed that the germinal vesicle oocytes, which have completed their maturation and developed into embryos, have high E2 values during HCG days (p=0.020).</p><p><strong>CONCLUSION:</strong> In our study, it has been demonstrated that in vitro maturation in rescue oocytes from stimulated cycles, embryo development potential could not be explained by the apoptosis parameter.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247518
Author(s):  
Thais Preisser Pontelo ◽  
Mauricio Machaim Franco ◽  
Taynan Stonoga Kawamoto ◽  
Felippe Manoel Costa Caixeta ◽  
Ligiane de Oliveira Leme ◽  
...  

This study aimed to evaluate the effect of scriptaid during pre-maturation (PIVM) and/or maturation (IVM) on developmental competence of bovine oocytes. Cumulus-oocyte complexes (COCs) were submitted to PIVM for 6 h in the presence or absence of scriptaid. COCs were distributed into five groups: T1-IVM for 22 h, T2-PIVM for 6 h and IVM for 22 h, T3-PIVM with scriptaid for 6 h and IVM for 22 h, T4-PIVM for 6 h and IVM with scriptaid for 22 h, and T5-PIVM with scriptaid for 6 h and IVM with scriptaid for 22 h. Nuclear maturation, gene expression, cumulus cells (CCs) expansion, and embryo development and quality were evaluated. At the end of maturation, all groups presented the majority of oocytes in MII (P>0.05). Only HAT1 gene was differentially expressed (P<0.01) in oocytes with different treatments. Regarding embryo development at D7, T4 (23%) and T5 (18%) had lower blastocyst rate (P<0.05) than the other treatments (T1 = 35%, T2 = 37% and T3 = 32%). No effect was observed when scriptaid in PIVM was used in less competent oocytes (P>0.05). In conclusion, presence of scriptaid in PIVM and/or IVM did not improve developmental competence or embryo quality.


2009 ◽  
Vol 21 (1) ◽  
pp. 159 ◽  
Author(s):  
Y. Q. Lu ◽  
D. N. Ye ◽  
M. Zhang ◽  
S. S. Lu ◽  
K. H. Lu

Buffalo is an important livestock resource in many Asian and Mediterranean countries. In vitro embryo production (IVEP) and transfer of the embryos to produce calves with high genetic merit would be of great interest in buffalo species. The efficiency of the IVEP in buffalo is low compared to that in bovine. It may be due to the reproductive physiology of buffalo or the technical factors in IVEP procedures. Recent research revealed that supplementation of leptin in the in vitro culture (IVC) medium could significantly increase embryo development (2005 Mol. Cell Endocrinol. 229, 141–147; 2006 Reproduction 132, 247–256). In this study, the effect of leptin on buffalo embryo development in vitro was assessed by supplementation of the leptin into the IVC medium. Methods: Buffalo oocytes were aspirated form 2 to 6 mm follicles from slaughterhouse ovaries and washed in TCM199 and once more with in vitro maturation (IVM) medium (TCM199, 5% ECS, 15 μg mL–1 FSH). Oocytes with compact cumulus cells were matured in IVM medium at 38.5°C, 5% CO2 for 22–22 h. The frozen–thawed buffalo sperm underwent a centrifugation in Percoll gradient to remove the dead sperm. Ten to 15 matured oocytes were added to a drop of 40 μL modified Tyrode’s medium supplemented with 0.6% BSA, 2.0 mm caffeine and 20 μg mL–1 Heparin. Concentration of sperm added into the fertilization medium was 1 to 2 million per mL. Eight to 10 h after insemination, the presumptive zygotes were transferred to IVC medium (TCM199, 10% newborn cow serum) supplemented with 0 ng mL–1 (control), 10 ng mL–1, 100 ng mL–1 or 500 ng mL–1 of leptin. Cleavage and blastocyst development rate was recorded on Day 2 and Day 6 to 8 after insemination. The experiment was repeated 10 times, and a total of 831 oocytes were used with the IVF procedures. The results revealed that the cleavage rates in the group of 0 ng mL–1, 10 ng mL–1, 100 ng mL–1 and 500 ng mL–1 of leptin were 50.1 ± 3.5%, 55.0 ± 1.3%, 50.0 ± 1.8% and 52.9 ± 2.2%, respectively. No statistical difference was observed regarding cleavage rates between treatments (P > 0.05). The percentage of oocytes developing to blastocysts in the group of 10 ng mL–1 and 100 ng mL–1 leptin were 26.1 ± 1.5% and 23.5 ± 1.2%, respectively, significantly higher than that of 17.5 ± 2.1% in the control (P < 0.05). The blastocyst development rate in the group of 500 ng mL–1 leptin was 20.9 ± 1.4%, less than that of 10 ng mL–1 (P < 0.05). In conclusion, the results of this study indicated that supplementation of leptin in the IVC medium could enhance the blastocyst development in buffalo species and the optimal concentration of leptin in the present procedures was 10 ng mL–1. This work was jointly supported by National Science and Technology Supporting Program (No. 2006BAD04A18), Guangxi Science Foundation (0832012) and Guangxi University Key Research Program (No. 2005ZD05).


2016 ◽  
Vol 28 (2) ◽  
pp. 237
Author(s):  
S. H. Lee ◽  
H. J. Oh ◽  
G. A. Kim ◽  
M. J. Kim ◽  
Y. B. Choi ◽  
...  

In oestrus stage, canine oocytes surrounded by cumulus cells undergo maturation in oviduct for 3 days after ovulation. We hypothesised that canine cumulus cells (cCC) and canine oviduct cells (cOC) in oestrus stage might affect the maturation of oocyte and embryo development. Therefore, the present study was aimed to compare the effects of cCC and cOC co-culture system on oocyte in vitro maturation and embryo in vitro development. cCC were separated from cumulus‐oocyte complex (COC) in ovary from bitches in oestrus phase. cOC were collected from oviduct flushing of bitches in oestrus phase. Both cCC and cOC were cultured and cryopreserved until use for co-culture. In the first experiment, the effect of co-culture using cCC and cOC on porcine oocyte in vitro maturation (IVM) were investigated. The porcine COC were randomly cultured in different co-culture groups as follows: 1) co-culturing with cCC for 42 h, 2) co-culturing with cOC for 42 h, and 3) culturing in absence of cCC or cOC. After IVM, extrusion of the first polar body was observed under a microscope. In the second experiment, the matured oocytes with the first polar body derived from each group were activated with electrical stimulus. Parthenotes were cultured in porcine zygote medium-5 (PZM-5) for 7 days at 39°C, 5% CO2 and O2 in a humidified atmosphere. The embryo developmental competence was estimated by assessing the in vitro development under microscope. The third experiment was to evaluate the reactive oxygen species (ROS) levels in each supernatant medium obtained from cCC and cOC co-culture group after IVM using a OxiselectTM ROS ELISA Assay kit. Last, analysis of genes (MAPK1/3, SMAD2/3, GDF9 and BMP15) expression in cCC and cOC co-cultured with porcine COC using real-time PCR is in progress. As results, IVM rate of cOC group (91.19 ± 0.45%) was significantly higher than that of cCC and control group (86.50 ± 0.61% and 79.81 ± 0.82%; P < 0.05). Also, cOC groups expressed the highest efficiency in cleavage rate, blastocyst formation rate, and the total cell number in blastocyst (P < 0.05). In ROS levels, cOC group (555 ± 7.77 nM) were significantly lower than cCC and control groups (596.8 ± 8.52 nM and 657.8 ± 11.34 nM). The present study demonstrated that co-culture with cOC improved the in vitro oocyte maturation and the in vitro development rate of porcine embryos. The ROS level decreased in cOC co-culture would have beneficial influence on oocytes maturation. For further study, we will investigate the relation between gene expression related to oocyte maturation and the co-culture results. This research was supported by a global PhD Fellowship Program through NRF funded by the Ministry of Education (NRF-20142A1021187), RDA (#PJ010928032015), IPET (#311011–05–4-SB010, #311062–04–3-SB010), Research Institute for Veterinary Science, and the BK21 plus program.


Sign in / Sign up

Export Citation Format

Share Document