scholarly journals Network diffusion for scalable embedding of massive single-cell ATAC-seq data

2021 ◽  
Author(s):  
Kangning Dong ◽  
Shihua Zhang
2021 ◽  
Author(s):  
Kangning Dong ◽  
Shihua Zhang

ABSTRACTWith the rapid development of single-cell ATAC-seq technology, it has become possible to profile the chromatin accessibility of massive individual cells. However, it remains challenging to characterize their regulatory heterogeneity due to the high-dimensional, sparse and near-binary nature of data. Most existing data representation methods were designed based on correlation, which may be ill-defined for sparse data. Moreover, these methods do not well address the issue of excessive zeros. Thus, a simple, fast and scalable approach is needed to analyze single-cell ATAC-seq data with massive cells, address the “missingness” and accurately categorize cell types. To this end, we developed a network diffusion method for scalable embedding of massive single-cell ATAC-seq data (named as scAND). Specifically, we considered the near-binary single-cell ATAC-seq data as a bipartite network that reflects the accessible relationship between cells and accessible regions, and further adopted a simple and scalable network diffusion method to embed it. scAND can take information from similar cells to alleviate the sparsity and improve cell type identification. Extensive tests and comparison with existing methods using synthetic and real data as benchmarks demonstrated its distinct superiorities in terms of clustering accuracy, robustness, scalability and data integration.AvailabilityThe Python-based scAND tool is freely available at http://page.amss.ac.cn/shihua.zhang/software.html.


Author(s):  
Debby A. Jennings ◽  
Michael J. Morykwas ◽  
Louis C. Argenta

Grafts of cultured allogenic or autogenic keratlnocytes have proven to be an effective treatment of chronic wounds and burns. This study utilized a collagen substrate for keratinocyte and fibroblast attachment. The substrate provided mechanical stability and augmented graft manipulation onto the wound bed. Graft integrity was confirmed by light and transmission electron microscopy.Bovine Type I dermal collagen sheets (100 μm thick) were crosslinked with 254 nm UV light (13.5 Joules/cm2) to improve mechanical properties and reduce degradation. A single cell suspension of third passage neonatal foreskin fibroblasts were plated onto the collagen. Five days later, a single cell suspension of first passage neonatal foreskin keratinocytes were plated on the opposite side of the collagen. The grafts were cultured for one month.The grafts were fixed in phosphate buffered 4% formaldehyde/1% glutaraldehyde for 24 hours. Graft pieces were then washed in 0.13 M phosphate buffer, post-fixed in 1% osmium tetroxide, dehydrated, and embedded in Polybed 812.


Author(s):  
Alexander Lind ◽  
Falastin Salami ◽  
Anne‐Marie Landtblom ◽  
Lars Palm ◽  
Åke Lernmark ◽  
...  

2020 ◽  
Vol 26 (10) ◽  
pp. 1644-1653 ◽  
Author(s):  
Wanxin Wang ◽  
Felipe Vilella ◽  
Pilar Alama ◽  
Inmaculada Moreno ◽  
Marco Mignardi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document